Surface area of inclined XY plane at 45 degrees

AI Thread Summary
The discussion focuses on calculating the surface area of a square rotated 45 degrees around the z-axis, transforming it into a rectangle. The original square has an area of a^2, while the new area involves a base of a and a reduced height h, leading to the equation Area = a * h. Participants suggest using coordinates and a rotation matrix to analytically determine the new dimensions and area. The conversation also touches on the implications for crop growth and insolation on the altered surface. The key question remains whether the area can be simplified to just sqrt(2) or if a more complex calculation is necessary.
marciokoko
Gold Member
Messages
87
Reaction score
0
Homework Statement
A regular 2 dimensional square has a surface area b*h. But if we rotate the plane on a z axis by 45 degrees (and are forced to extend the length of let’s say, the base, then I guess what happens is that the square now becomes a rectangle with longer sides for b.

Is there a way to calculate how much longer the sides got given the plane must still reside within the original square dimensions?

I’m trying to find out how much more surface area you get by growing crops on a flat square versus that now elongated rectangle obtained by rotating the original square 45 degrees on that z axis.

Not sure if I’m being clear enough. Lemme know.
Relevant Equations
Base x height and possibly 1:1:sqrt 2
Is it just sqrt2?
 
Physics news on Phys.org
marciokoko said:
Homework Statement: A regular 2 dimensional square has a surface area b*h. But if we rotate the plane on a z axis by 45 degrees (and are forced to extend the length of let’s say, the base, then I guess what happens is that the square now becomes a rectangle with longer sides for b.

Is there a way to calculate how much longer the sides got given the plane must still reside within the original square dimensions?

I’m trying to find out how much more surface area you get by growing crops on a flat square versus that now elongated rectangle obtained by rotating the original square 45 degrees on that z axis.

Not sure if I’m being clear enough. Lemme know.
Relevant Equations: Base x height and possibly 1:1:sqrt 2

Is it just sqrt2?
Are you familiar with the Pythagorean theorem and the definition of the sine of an angle?
 
Square_Edge_view.png
When you look at the square of side ##a## before you rotate it, you see an area equal to the base times the height, ##Area=a\times a =a^2##. When you rotate about the base, the base is still ##a##, but the height gets shorter, call it ##h##. The new area is ##Area = a\times h## (see figure on the right.)

Can you find the relation between ##a## and #h##? See @Chestermiller's post.
 
marciokoko said:
Homework Statement: A regular 2 dimensional square has a surface area b*h. But if we rotate the plane on a z axis by 45 degrees (and are forced to extend the length of let’s say, the base, then I guess what happens is that the square now becomes a rectangle with longer sides for b.

Is there a way to calculate how much longer the sides got given the plane must still reside within the original square dimensions?

I’m trying to find out how much more surface area you get by growing crops on a flat square versus that now elongated rectangle obtained by rotating the original square 45 degrees on that z axis.

Not sure if I’m being clear enough. Lemme know.
Relevant Equations: Base x height and possibly 1:1:sqrt 2

Is it just sqrt2?
You may be able to do this analytically by using coordinates, with your square having vertex set {##(0,0), (0,a), (a,0), (a,a)##}, then applying a rotation matrix to the vertices, then extending. You'll end up with a figure made of rectangles and triangles who's area you can easily find, or, you may easily integrate some simple linear maps.
 
marciokoko said:
how much more surface area you get by growing crops on a flat square versus that now elongated rectangle obtained by rotating the original square 45 degrees on that z axis.
What about insolation?
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top