Surface area of inclined XY plane at 45 degrees

Click For Summary

Homework Help Overview

The discussion revolves around calculating the surface area of a square that has been rotated 45 degrees about the z-axis, transforming it into a rectangle. Participants are exploring the implications of this transformation on the area available for growing crops.

Discussion Character

  • Exploratory, Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants are considering the relationship between the original square's dimensions and the new rectangle's dimensions after rotation. Questions about how to calculate the new area and the implications for crop growth are raised. There is also a mention of using coordinates and rotation matrices for analysis.

Discussion Status

The discussion is ongoing, with participants providing insights and asking clarifying questions. Some guidance on potential analytical approaches has been suggested, but no consensus has been reached regarding the calculations or interpretations of the problem.

Contextual Notes

There is a focus on maintaining the original square's dimensions while exploring the effects of rotation. Participants are also considering additional factors such as insolation in relation to the area calculations.

marciokoko
Gold Member
Messages
87
Reaction score
0
Homework Statement
A regular 2 dimensional square has a surface area b*h. But if we rotate the plane on a z axis by 45 degrees (and are forced to extend the length of let’s say, the base, then I guess what happens is that the square now becomes a rectangle with longer sides for b.

Is there a way to calculate how much longer the sides got given the plane must still reside within the original square dimensions?

I’m trying to find out how much more surface area you get by growing crops on a flat square versus that now elongated rectangle obtained by rotating the original square 45 degrees on that z axis.

Not sure if I’m being clear enough. Lemme know.
Relevant Equations
Base x height and possibly 1:1:sqrt 2
Is it just sqrt2?
 
Physics news on Phys.org
marciokoko said:
Homework Statement: A regular 2 dimensional square has a surface area b*h. But if we rotate the plane on a z axis by 45 degrees (and are forced to extend the length of let’s say, the base, then I guess what happens is that the square now becomes a rectangle with longer sides for b.

Is there a way to calculate how much longer the sides got given the plane must still reside within the original square dimensions?

I’m trying to find out how much more surface area you get by growing crops on a flat square versus that now elongated rectangle obtained by rotating the original square 45 degrees on that z axis.

Not sure if I’m being clear enough. Lemme know.
Relevant Equations: Base x height and possibly 1:1:sqrt 2

Is it just sqrt2?
Are you familiar with the Pythagorean theorem and the definition of the sine of an angle?
 
Square_Edge_view.png
When you look at the square of side ##a## before you rotate it, you see an area equal to the base times the height, ##Area=a\times a =a^2##. When you rotate about the base, the base is still ##a##, but the height gets shorter, call it ##h##. The new area is ##Area = a\times h## (see figure on the right.)

Can you find the relation between ##a## and #h##? See @Chestermiller's post.
 
marciokoko said:
Homework Statement: A regular 2 dimensional square has a surface area b*h. But if we rotate the plane on a z axis by 45 degrees (and are forced to extend the length of let’s say, the base, then I guess what happens is that the square now becomes a rectangle with longer sides for b.

Is there a way to calculate how much longer the sides got given the plane must still reside within the original square dimensions?

I’m trying to find out how much more surface area you get by growing crops on a flat square versus that now elongated rectangle obtained by rotating the original square 45 degrees on that z axis.

Not sure if I’m being clear enough. Lemme know.
Relevant Equations: Base x height and possibly 1:1:sqrt 2

Is it just sqrt2?
You may be able to do this analytically by using coordinates, with your square having vertex set {##(0,0), (0,a), (a,0), (a,a)##}, then applying a rotation matrix to the vertices, then extending. You'll end up with a figure made of rectangles and triangles who's area you can easily find, or, you may easily integrate some simple linear maps.
 
marciokoko said:
how much more surface area you get by growing crops on a flat square versus that now elongated rectangle obtained by rotating the original square 45 degrees on that z axis.
What about insolation?
 
  • Like
Likes   Reactions: Tom.G

Similar threads

  • · Replies 13 ·
Replies
13
Views
1K
Replies
39
Views
3K
  • · Replies 45 ·
2
Replies
45
Views
4K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
2
Views
2K
Replies
8
Views
2K