Surface Current and Electric Field

AI Thread Summary
The discussion revolves around understanding the relationship between surface charge density and current density in the context of two infinite sheets of ideal conductive material. The user is struggling to apply Gauss's law in two dimensions to find the electric field, which is parallel to the surfaces rather than perpendicular. They express confusion about the source of the electric field and the implications for current density. The mention of a propagating electromagnetic wave suggests a consideration of dynamic fields in the analysis. The conversation highlights the complexities of applying classical physics principles to non-standard geometries.
BnayaMeir
Messages
1
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
Hi everyone!

I'm pretty new in this forum, I found the topics here very relevant to my physics course. And here is my question:

Given the following drawing, two infinite sheets (in y and z axis) of ideal conductive material. their thickness is infinitesimal (dx->0).

Screenshot 2022-04-26 152843.png


The electric field is defined:

Screenshot 2022-04-26 160051.png

I have askes to find the surface charge and current density.

well.. I tried to apply the integral gauss law
1650978402507.png
but in 2 dimensions (didn't work).
I have also tries the derivative version of the law
1650978512678.png
which gave me zero. it looks right for me, since the electric field should be perpendicular to the surface. but the only electric field is parallel to the surfaces. Then where this field is come from?? I'm very confused..

I thought to find the current density after finding the charge density by the following equation in 2-D:
1650978895539.png


I hope you will be able to help me, thanks a lot!
 
Physics news on Phys.org
Have you considered that this could be the electric field of a propagating electromagnetic wave?
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top