Surface Current and Electric Field

AI Thread Summary
The discussion revolves around understanding the relationship between surface charge density and current density in the context of two infinite sheets of ideal conductive material. The user is struggling to apply Gauss's law in two dimensions to find the electric field, which is parallel to the surfaces rather than perpendicular. They express confusion about the source of the electric field and the implications for current density. The mention of a propagating electromagnetic wave suggests a consideration of dynamic fields in the analysis. The conversation highlights the complexities of applying classical physics principles to non-standard geometries.
BnayaMeir
Messages
1
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
Hi everyone!

I'm pretty new in this forum, I found the topics here very relevant to my physics course. And here is my question:

Given the following drawing, two infinite sheets (in y and z axis) of ideal conductive material. their thickness is infinitesimal (dx->0).

Screenshot 2022-04-26 152843.png


The electric field is defined:

Screenshot 2022-04-26 160051.png

I have askes to find the surface charge and current density.

well.. I tried to apply the integral gauss law
1650978402507.png
but in 2 dimensions (didn't work).
I have also tries the derivative version of the law
1650978512678.png
which gave me zero. it looks right for me, since the electric field should be perpendicular to the surface. but the only electric field is parallel to the surfaces. Then where this field is come from?? I'm very confused..

I thought to find the current density after finding the charge density by the following equation in 2-D:
1650978895539.png


I hope you will be able to help me, thanks a lot!
 
Physics news on Phys.org
Have you considered that this could be the electric field of a propagating electromagnetic wave?
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top