Surface density of the charges induced on the bases of the cylinder

Click For Summary
SUMMARY

The surface density of charges induced on the bases of a cylinder is calculated using the formula ##\sigma = \varepsilon_0 E \frac{\varepsilon - 1}{\varepsilon}##. The discussion highlights the derivation of electric fields inside and outside the cylinder, emphasizing the relationship between the electric field and surface charge density. Key equations include ##E_{in} = \frac{E_{out}}{\varepsilon}## and ##E = \frac{\sigma}{2\varepsilon_0}##, with Gauss' law being applied to determine the electric fields produced by surface charges. The importance of correctly interpreting the dielectric constant ##\varepsilon## as dimensionless is also noted.

PREREQUISITES
  • Understanding of Gauss' law in electrostatics
  • Familiarity with electric field concepts and surface charge density
  • Knowledge of dielectric materials and relative permittivity
  • Basic algebra for manipulating equations in electrostatics
NEXT STEPS
  • Study the application of Gauss' law to different geometries in electrostatics
  • Learn about the effects of dielectric materials on electric fields
  • Explore the relationship between electric field strength and surface charge density in various configurations
  • Investigate the implications of relative permittivity in capacitor design and performance
USEFUL FOR

Students and professionals in physics, electrical engineering, and materials science, particularly those focused on electrostatics and dielectric materials.

rokiboxofficial Ref
Messages
3
Reaction score
1
Homework Statement
The dielectric cylinder is in an external uniform electric field E, which is parallel to the axis of the cylinder. Find the surface density of the charges induced on the bases of the cylinder. Dielectric constant of the cylinder material is equal to ε. The height of a cylinder is much less than the radius of its bases.
Relevant Equations
##E_{in} = E_{out} - E_{ind}##
##E_{in} = \frac{E_{out}}{\varepsilon}##
The correct answer to this problem is: ##\sigma = \varepsilon_0E\frac{\varepsilon-1}{\varepsilon}##
Here is my attempt to solve it, please tell me what is my mistake?
##E_{in} = E_{out} - E_{ind}##
##E_{ind} = E_{out} - E_{in}##
##E_{in} = \frac{E_{out}}{\varepsilon}##
##E_{ind} = E_{out} - \frac{E_{out}}{\varepsilon}##
##E = \frac{\sigma}{2\varepsilon_0\varepsilon}##
##E_{ind} = E_{ind+} + E_{ind-}##
##E_{ind} = \frac{\sigma}{2\varepsilon_0\varepsilon} + \frac{\sigma}{2\varepsilon_0\varepsilon} = \frac{\sigma}{\varepsilon_0\varepsilon}##
##\sigma = E_{ind}\varepsilon_0\varepsilon##
##\sigma = \left( E_{out} - \frac{E_{out}}{\varepsilon} \right)\varepsilon_0\varepsilon##
##\sigma = E_{out}\varepsilon_0\varepsilon- \frac{E_{out}\varepsilon_0\varepsilon}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\varepsilon- E_{out}\varepsilon_0##
##\sigma = E_{out}\varepsilon_0\left( \varepsilon- 1 \right)##
 
Physics news on Phys.org
I think ##~E_{in} = \frac{E_{out}}{\varepsilon}~## should be ##~E_{in} = \frac{\varepsilon_0 E_{out}}{\varepsilon}~## otherwise the dimensions are incorrect. See if that fixes the problem.
 
kuruman said:
I think ##~E_{in} = \frac{E_{out}}{\varepsilon}~## should be ##~E_{in} = \frac{\varepsilon_0 E_{out}}{\varepsilon}~## otherwise the dimensions are incorrect. See if that fixes the problem.
No, it doesn't fix it:

##E_{in} = \frac{\varepsilon_0E_{out}}{\varepsilon}##
##E_{ind} = E_{out} - E_{in}##
##E_{ind} = E_{out} - \frac{\varepsilon_0E_{out}}{\varepsilon}##
##\sigma = \left( E_{out} - \frac{\varepsilon_0E_{out}}{\varepsilon} \right)\varepsilon_0\varepsilon##
##\sigma = E_{out}\varepsilon_0\varepsilon- \frac{\varepsilon_0E_{out}\varepsilon_0\varepsilon}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\varepsilon- E_{out}{\varepsilon_0}^2##
##\sigma = E_{out}\varepsilon_0\left( \varepsilon- \varepsilon_0 \right)##

And the formula ##E_{in} = \frac{E_{out}}{\varepsilon}## was given to me in the training material for the task, I think that it is most likely correct.
 
rokiboxofficial Ref said:
The correct answer to this problem is: ##\sigma = \varepsilon_0E\frac{\varepsilon-1}{\varepsilon}##
Here is my attempt to solve it, please tell me what is my mistake?
##E_{in} = E_{out} - E_{ind}##
##E_{ind} = E_{out} - E_{in}##
##E_{in} = \frac{E_{out}}{\varepsilon}##
##E_{ind} = E_{out} - \frac{E_{out}}{\varepsilon}##
##E = \frac{\sigma}{2\varepsilon_0\varepsilon}##
##E_{ind} = E_{ind+} + E_{ind-}##
##E_{ind} = \frac{\sigma}{2\varepsilon_0\varepsilon} + \frac{\sigma}{2\varepsilon_0\varepsilon} = \frac{\sigma}{\varepsilon_0\varepsilon}##
##\sigma = E_{ind}\varepsilon_0\varepsilon##
##\sigma = \left( E_{out} - \frac{E_{out}}{\varepsilon} \right)\varepsilon_0\varepsilon##
##\sigma = E_{out}\varepsilon_0\varepsilon- \frac{E_{out}\varepsilon_0\varepsilon}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\varepsilon- E_{out}\varepsilon_0##
##\sigma = E_{out}\varepsilon_0\left( \varepsilon- 1 \right)##
I believe the mistake occurs where you wrote $$E = \frac{\sigma}{2\varepsilon_0\varepsilon}$$ for the electric field produced by ##\sigma## on one of the surfaces. You can treat the surface as an infinite plane. The electric field produced by an infinite plane of surface charge ##\sigma## can be found using Gauss' law.
 
kuruman said:
I think ##~E_{in} = \frac{E_{out}}{\varepsilon}~## should be ##~E_{in} = \frac{\varepsilon_0 E_{out}}{\varepsilon}~## otherwise the dimensions are incorrect. See if that fixes the problem.
Looks like ##\varepsilon## is being used for the relative permittivity, so is dimensionless.
 
TSny said:
I believe the mistake occurs where you wrote $$E = \frac{\sigma}{2\varepsilon_0\varepsilon}$$ for the electric field produced by ##\sigma## on one of the surfaces. You can treat the surface as an infinite plane. The electric field produced by an infinite plane of surface charge ##\sigma## can be found using Gauss' law.
Yes, you are right! Thank you a lot!
Is this solution a correct?
By Gauss' law:
##\frac{q}{\varepsilon_0} = ES_{full}##
##\frac{q}{\varepsilon_0} = 2ES##
##E = \frac{q}{2\varepsilon_0S}##
##E = \frac{\sigma}{2\varepsilon_0}##
##E_{ind} = E_{ind+} + E_{ind-}##
##E_{ind} = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}
{\varepsilon_0}##
##\sigma = E_{ind}\varepsilon_0##
##E_{ind} = E_{out} - \frac{E_{out}}{\varepsilon}##
##\sigma = \left( E_{out} - \frac{E_{out}}{\varepsilon} \right)\varepsilon_0##
##\sigma = E_{out}\varepsilon_0- \frac{E_{out}\varepsilon_0}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\left( 1 - \frac{1}{\varepsilon}\right)##
##\sigma = E_{out}\varepsilon_0\left( \frac{\varepsilon}{\varepsilon} - \frac{1}{\varepsilon}\right)##
##\sigma = E_{out}\varepsilon_0\left(\frac{\varepsilon - 1}{\varepsilon}\right)##
 
rokiboxofficial Ref said:
Yes, you are right! Thank you a lot!
Is this solution a correct?
By Gauss' law:
##\frac{q}{\varepsilon_0} = ES_{full}##
##\frac{q}{\varepsilon_0} = 2ES##
##E = \frac{q}{2\varepsilon_0S}##
##E = \frac{\sigma}{2\varepsilon_0}##
##E_{ind} = E_{ind+} + E_{ind-}##
##E_{ind} = \frac{\sigma}{2\varepsilon_0} + \frac{\sigma}{2\varepsilon_0} = \frac{\sigma}
{\varepsilon_0}##
##\sigma = E_{ind}\varepsilon_0##
##E_{ind} = E_{out} - \frac{E_{out}}{\varepsilon}##
##\sigma = \left( E_{out} - \frac{E_{out}}{\varepsilon} \right)\varepsilon_0##
##\sigma = E_{out}\varepsilon_0- \frac{E_{out}\varepsilon_0}{\varepsilon}##
##\sigma = E_{out}\varepsilon_0\left( 1 - \frac{1}{\varepsilon}\right)##
##\sigma = E_{out}\varepsilon_0\left( \frac{\varepsilon}{\varepsilon} - \frac{1}{\varepsilon}\right)##
##\sigma = E_{out}\varepsilon_0\left(\frac{\varepsilon - 1}{\varepsilon}\right)##
Looks good.
 
  • Like
Likes   Reactions: rokiboxofficial Ref
haruspex said:
Looks like ##\varepsilon## is being used for the relative permittivity, so is dimensionless.
Yes. ##\varepsilon## is given to be the "dielectric constant", which is the same as the relative permittivity.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 3 ·
Replies
3
Views
628
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 18 ·
Replies
18
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
935
  • · Replies 8 ·
Replies
8
Views
2K