Hi, I'm trying to solve a problem in David Bachman's(adsbygoogle = window.adsbygoogle || []).push({}); Geometric Approach to Differential Forms(teaching myself.) The problem is to integrate the scalar function f(x,y,z) = z^2 over the top half of the unit sphere centered at the origin, parameterized by [tex]\phi(r,\theta) = (rcos\theta, rsin\theta, \sqrt{1 - r^2}), 0 \leq r \leq 1, 0 \leq \theta \leq 2\pi[/tex]. I think we can evaluate this surface integral using the formula [tex]\int\int_{S}f(x,y,z)dS = \int\int_{D}f(\phi(r, \theta))|\phi_{r}\times\phi_{\theta}|drd\theta[/tex] yielding:

[tex]

\int^{2\pi}_{0}\int^{1}_{0}(1-r^2)|\partial\phi/\partial r \times \partial\phi/\partial\theta| dr d\theta

[/tex]

[tex]

\int^{2\pi}_{0}\int^{1}_{0}(1-r^2)|<r^2cos\theta/\sqrt{1 - r^2}, r^2sin\theta/\sqrt{1 - r^2}, r>| dr d\theta

[/tex]

[tex]

\int^{2\pi}_{0}\int^{1}_{0}(1-r^2)\sqrt{(r^4cos^2\theta + r^4sin^2\theta)/(1 - r^2) + r^2} dr d\theta

[/tex]

[tex]

\int^{2\pi}_{0}\int^{1}_{0}(1-r^2)\sqrt{(r^2/(1 - r^2)} dr d\theta

[/tex]

[tex]

\int^{2\pi}_{0}d\theta\int^{1}_{0}r\sqrt{1 - r^2} dr = 2\pi/3

[/tex]

However, using differential forms, if we let [tex]\omega = z^2 dx \wedge dy[/tex] and use the same parameterization to integrate [tex]\omega[/tex] over the mentioned manifold, we get

[tex]\int_{M}\omega = \int_{D}(1 - r^2)\cdot(\partial\phi/\partial r, \partial\phi/\partial\theta)dx \wedge dy[/tex] (Here [tex]\partial\phi/\partial r, \partial\phi/\partial\theta[/tex] are the tangent vectors being acted on by [tex]dx \wedge dy[/tex])

[tex]\int_{D}(1 - r^2) det[cos\theta \; -rsin\theta , \; \; sin\theta \; rcos\theta]drd\theta[/tex] (the matrix rows are separated by the comma.)

[tex]\int^{2\pi}_{0}\int^{1}_{0}(1 - r^2)(r)drd\theta = \pi/2[/tex]

Am I doing something wrong? If anyone can help I'd appreciate it, thanks!

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Surface integral with differential forms

Loading...

Similar Threads - Surface integral differential | Date |
---|---|

Integration of Ricci Scalar Over Surface | Apr 12, 2015 |

The true TFC for surface integrals | Mar 29, 2014 |

Fundamental theorem of calculus for surface integrals? | Dec 27, 2013 |

Computing a discrete surface integral of a scalar function | Oct 24, 2013 |

Evaluating integral on surfaces | Mar 25, 2012 |

**Physics Forums - The Fusion of Science and Community**