Given F= [tex](ix+jy) Ln(x^2+y^2)[/tex](adsbygoogle = window.adsbygoogle || []).push({});

and given S, which is a cylinder of radius r, and height h(in the z axis) evaluate [tex] \int\int_s F.n \,ds[/tex]. It says that you shouldn't need to do any work if you think about it enough. I figured I could find the area of the main part to be [tex]2 \pi r h[/tex] then multiply that by [tex]Ln(r^2)=2Ln(r)[/tex] to get the answer but I am off by a factor of r in my answer. I don't think the caps to the cylinder contribute to this as the normal is orthogonal to F.

One more question, what exactly does a surface integral return? I feel stupid but I can't seem to find out exactly what the physical meaning of the result of a surface integral is. Thanks for the help.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Surface integrals (without real integration)

**Physics Forums | Science Articles, Homework Help, Discussion**