Surface smoothness of a slowly frozen metal droplet

AI Thread Summary
A slowly cooled liquid metal droplet, if free from external disturbances and oxygen, may retain a smooth surface upon solidification, but factors like differential thermal expansion could introduce roughness. The choice of metal, droplet size, and cooling rate can minimize this roughness, while solid grain growth may also affect surface smoothness. The discussion highlights the importance of understanding the solid-vacuum interface and its impact on optical properties, particularly for phase change materials. Estimations of reflectivity loss in solidified droplets compared to polished surfaces remain uncertain, with examples from solder joints illustrating the significance of surface quality in practical applications. Overall, the relationship between cooling conditions and surface characteristics is critical for optical applications of metal droplets.
timelessmidgen
Messages
19
Reaction score
0
TL;DR Summary
Liquid metal looks smooth and polished (highly reflective in visible light). If a liquid metal droplet is left to cool slowly and undisturbed and away from oxygen, will the solidified droplet remain highly polished? Or will the freezing process roughen up the surface a bit?
Would a small (of order 5 microns to 0.5 mm) liquid metal droplet, if cooled slowly away from external perturbations and not in the presence of oxygen, retain its highly smooth and polished surface as it froze? What phenomena would influence the surface roughness?

I assume that simple density changes from liquid to solid could cause roughness from differential shrinking/expanding, but I think these could be minimized by cooling more slowly/uniformly, reducing droplet size, and selecting metals with small or zero (in the case of some alloys) volume expansion coefficients. Is there an additional roughness introduced due to solid grain growth on the molecular scale?

Your thoughts and resources regarding this topic would be much appreciated. My general googling of the issue turns up many resources dealing with homogeneous/heterogeneous nucleation and growth of solid-liquid interfaces, but not generally anything about the external solid-vacuum interface.
 
Engineering news on Phys.org
On "freezing", a liquid metal becomes a crystaline structure and will not have as smooth a surface as the liquid.
 
  • Like
Likes timelessmidgen
Thanks! Is it possible to estimate how rough the surface becomes or how much less reflective it would be than a polished surface?

ETA: The underlying reason I'm curious about this is because I'm thinking about possible optical applications of phase change materials. Ultimately I'm curious about a simple metal droplet temperature-dependent reflector, and how much of a change in reflectivity might be reliably seen over many freeze-melt cycles. An accurate number would, I suspect, require detailed numerical simulation of a particular material. Nonetheless I would be curious to know if there is even an order-of-magnitude estimate (like, "the freshly solidified droplet will be about 20% less reflective than a polished surface" or "the freshly solidified droplet will be about 0.2% less reflective than a polished surface")
 
Last edited:
Just as a macro example, common Tin-Lead solder used in electronic asembly, when left to cool undisturbed from molten has a quite smooth shiny surface.

If it is mechanically disturbed when near its solidification temperature it flash-freezes and has a visually obvious crystalline surface.

A non-shiny surface on a solder joint qualifies as an instant Quality Control failure, and rework.
 
  • Like
Likes timelessmidgen
Tom.G said:
Just as a macro example, common Tin-Lead solder used in electronic asembly, when left to cool undisturbed from molten has a quite smooth shiny surface.

If it is mechanically disturbed when near its solidification temperature it flash-freezes and has a visually obvious crystalline surface.

A non-shiny surface on a solder joint qualifies as an instant Quality Control failure, and rework.
Ok interesting, thanks! An example that the change in reflectivity might be very slight.
 
Tom.G said:
A non-shiny surface on a solder joint qualifies as an instant Quality Control failure, and rework.
HA ! 50 years ago I would have though of that right away. Thanks for the reminder.
 
Back
Top