I Taylor expansion about lagrangian in noether

Click For Summary
The discussion centers on the mathematical derivation of Noether's theorem, particularly how Lagrangians transform under infinitesimal transformations. It highlights that when Lagrangians differ by a total time derivative of a function, the first-order Taylor expansion suffices to establish equivalence between transformed and original Lagrangians. The key point is that the first-order term leads to a conservation law derived from the Euler-Lagrange equations. The conversation also touches on the possibility of extending these concepts to more general transformations, maintaining the symmetry condition and resulting conservation laws. Understanding these transformations is crucial for grasping the implications of Noether's theorem in physics.
gionole
Messages
281
Reaction score
24
I was studying a derivation of noether's theorem mathematically and something struck my eyes.

Suppose you have ##L(q, \dot q, t)## and you transform it and get ##L' = L(\sigma(q, a), \frac{d}{dt}\sigma(q,a), t)##. ##\sigma## is a transformation function for ##q##

Let's represent ##L'## by taylor around point 0, which gives us:

##L(q, \dot q) + a\frac{\partial L}{\partial a}\Bigr|_{a=0} + a^2\frac{\partial^2 L}{\partial a^2}\Bigr|_{a=0} + ...##

Now, here is the tricky part: If lagrangians(before and after transformation) are differed by total time derivative of some function, we can say that:
##\frac{\partial L}{\partial a}\Bigr|_{a=0} = \frac{d}{dt}\Lambda##

Note that first order from taylor turned out to be enough, even though taylor only with first order is not the exact(100%) approximation of any ##L##. So it turns out that we use: ##a\frac{\partial L}{\partial a}\Bigr|_{a=0} = a\frac{d}{dt}\Lambda## instead of ##a\frac{\partial L}{\partial a}\Bigr|_{a=0} + a^2\frac{\partial^2 L}{\partial a^2}\Bigr|_{a=0} + ... = \frac{d}{dt}\Lambda##

I am told that we can do this because ##a## is infinetisemal transformation, but still don't get why this works. I know I need to know lie theory to understand this, but isn't there really any other way to somehow grasp it without bunch of math ?
 
Last edited:
Physics news on Phys.org
You just need that ##L'## and ##L## should be equivalent Lagrangians, i.e., that there exists a function ##\Omega(q,t)## such that
$$L'[\sigma(q,a),\dot{\sigma}(q,a),t]=L(q,\dot{q},t]+\dot{\Omega}(q,t),$$
where the dots mean total derivatives (symmetry condition).

For an infinitesimal transformation, i.e., ##q'=q+\epsilon \sigma(q,t)## you can make the ansatz ##\Omega(q,t)=-\epsilon \tilde{\Omega}(q,t)## and expand the LHS of the symmetry condition to first order in ##\epsilon##, which then leads to a conservation law for the solutions of the Euler-Lagrange equations.

BTW: That's only the most simple special form of the transformations considered in Noether's theorem. You can extend it to more general transformations,
$$t'=t+\epsilon \Theta(q,\dot{q},t), \quad q'=q+\epsilon Q(q,\dot{q},t).$$
Then
$$\frac{\mathrm{d}}{\mathrm{d} t'} L[q+\epsilon Q,\dot{q}+\epsilon \dot{Q},t+\epsilon \Theta(q,\dot{q},t)]=L(q,\dot{q},t) -\epsilon \dot{\tilde{\Omega}}(q,t).$$
Now again you can expand everything to 1st order in ##\epsilon## to get the symmetry condition, and then there follows again a conservation law for the solutions of the Euler-Lagrange equations.
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

  • · Replies 19 ·
Replies
19
Views
4K
Replies
6
Views
2K
Replies
2
Views
569
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K