- #1

- 832

- 30

**Hi there. When I have dummy indices in a tensor equation with separate terms, I wanted to know if I can rename the dummies in the separate terms.**

I have, in particular:

[tex]\displaystyle w_k=-\frac{1}{4}\epsilon_{kpq}\left [ \frac{\partial u_p}{\partial x_q}-\frac{\partial u_q}{\partial x_p} \right ]=-\frac{1}{4}\epsilon_{kpq}\frac{\partial u_p}{\partial x_q}+\frac{1}{4}\epsilon_{kpq}\frac{\partial u_q}{\partial x_p}=\frac{1}{4}\epsilon_{kqp}\frac{\partial u_p}{\partial x_q}+\frac{1}{4}\epsilon_{kpq}\frac{\partial u_q}{\partial x_p} [/tex]

I've used that [tex]\epsilon_{kpq}=-\epsilon_{kqp}[/tex]

So, if I can change the dummy indices for the separate terms I can use that:

[tex]\frac{1}{4}\epsilon_{kpq}\frac{\partial u_q}{\partial x_p}=\frac{1}{4}\epsilon_{kqp}\frac{\partial u_p}{\partial x_q}[/tex]

to get:

[tex] w_k= \frac{1}{2} \epsilon_{kqp} \frac{\partial u_p}{\partial x_q} [/tex]

I have, in particular:

[tex]\displaystyle w_k=-\frac{1}{4}\epsilon_{kpq}\left [ \frac{\partial u_p}{\partial x_q}-\frac{\partial u_q}{\partial x_p} \right ]=-\frac{1}{4}\epsilon_{kpq}\frac{\partial u_p}{\partial x_q}+\frac{1}{4}\epsilon_{kpq}\frac{\partial u_q}{\partial x_p}=\frac{1}{4}\epsilon_{kqp}\frac{\partial u_p}{\partial x_q}+\frac{1}{4}\epsilon_{kpq}\frac{\partial u_q}{\partial x_p} [/tex]

I've used that [tex]\epsilon_{kpq}=-\epsilon_{kqp}[/tex]

So, if I can change the dummy indices for the separate terms I can use that:

[tex]\frac{1}{4}\epsilon_{kpq}\frac{\partial u_q}{\partial x_p}=\frac{1}{4}\epsilon_{kqp}\frac{\partial u_p}{\partial x_q}[/tex]

to get:

[tex] w_k= \frac{1}{2} \epsilon_{kqp} \frac{\partial u_p}{\partial x_q} [/tex]

which is the result I'm looking for, but I wasn't sure if the last step is right.which is the result I'm looking for, but I wasn't sure if the last step is right.

Last edited: