MHB Tensor multiplication 3 dimesnsions

Dustinsfl
Messages
2,217
Reaction score
5
\begin{alignat*}{3}
A_{ij}B_{ij} & = & (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})\\
& = & A_{(ij)}B_{(ij)} + A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} + A_{[ij]}B_{[ij]}
\end{alignat*}
$$
A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = \frac{1}{2}(A_{ji}B_{ij} - A_{ij}B_{ji})
$$
Can I then say $A_{ji}B_{ij} = C_{jj} = C_{3\times 3}$ and $A_{ij}B_{ji} = C_{ii} = C_{3\times 3}$?
Therefore, $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$.
 
Physics news on Phys.org
Dustin, I think you basically solved it in line 1, since
$$
A_{ij} = A_{(ij)} + A_{[ij]}
$$
(decomposition of the tensor into symmetric $(A_{(ij)}$ and antisymmetric $(A_{[ij]})$ parts), so
$$
A_{ij}B_{ij} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$

But how does
$$
A_{(ij)}B_{(ij)} + A_{[ij]}B_{[ij]} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$
? Thanks
 
wmccunes said:
Dustin, I think you basically solved it in line 1, since
$$
A_{ij} = A_{(ij)} + A_{[ij]}
$$
(decomposition of the tensor into symmetric $(A_{(ij)}$ and antisymmetric $(A_{[ij]})$ parts), so
$$
A_{ij}B_{ij} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$

But how does
$$
A_{(ij)}B_{(ij)} + A_{[ij]}B_{[ij]} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$
? Thanks

If $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$ which I am not sure how to show.
 
dwsmith said:
If $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$ which I am not sure how to show.

Yes nevermind I was looking at your solution backwards. Breaking up $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)}$ into elements it all canceled out except
$$
\frac{1}{2}(A_{ij}B_{ij} - A_{ji}B_{ji})
$$
so if that equals zero we are good...
 
wmccunes said:
Yes nevermind I was looking at your solution backwards. Breaking up $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)}$ into elements it all canceled out except
$$
\frac{1}{2}(A_{ij}B_{ij} - A_{ji}B_{ji})
$$
so if that equals zero we are good...

Yup
 
The world of 2\times 2 complex matrices is very colorful. They form a Banach-algebra, they act on spinors, they contain the quaternions, SU(2), su(2), SL(2,\mathbb C), sl(2,\mathbb C). Furthermore, with the determinant as Euclidean or pseudo-Euclidean norm, isu(2) is a 3-dimensional Euclidean space, \mathbb RI\oplus isu(2) is a Minkowski space with signature (1,3), i\mathbb RI\oplus su(2) is a Minkowski space with signature (3,1), SU(2) is the double cover of SO(3), sl(2,\mathbb C) is the...

Similar threads

Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K