MHB Tensor multiplication 3 dimesnsions

Click For Summary
The discussion centers on the decomposition of tensors into symmetric and antisymmetric parts, specifically examining the equation A_{ij}B_{ij} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]}). Participants explore the relationship between the components and question how certain terms cancel out, particularly A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)}. It is suggested that if this expression equals zero, the overall equation holds true. The conversation concludes with a consensus on the validity of the derived relationships and their implications for tensor multiplication in three dimensions.
Dustinsfl
Messages
2,217
Reaction score
5
\begin{alignat*}{3}
A_{ij}B_{ij} & = & (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})\\
& = & A_{(ij)}B_{(ij)} + A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} + A_{[ij]}B_{[ij]}
\end{alignat*}
$$
A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = \frac{1}{2}(A_{ji}B_{ij} - A_{ij}B_{ji})
$$
Can I then say $A_{ji}B_{ij} = C_{jj} = C_{3\times 3}$ and $A_{ij}B_{ji} = C_{ii} = C_{3\times 3}$?
Therefore, $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$.
 
Physics news on Phys.org
Dustin, I think you basically solved it in line 1, since
$$
A_{ij} = A_{(ij)} + A_{[ij]}
$$
(decomposition of the tensor into symmetric $(A_{(ij)}$ and antisymmetric $(A_{[ij]})$ parts), so
$$
A_{ij}B_{ij} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$

But how does
$$
A_{(ij)}B_{(ij)} + A_{[ij]}B_{[ij]} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$
? Thanks
 
wmccunes said:
Dustin, I think you basically solved it in line 1, since
$$
A_{ij} = A_{(ij)} + A_{[ij]}
$$
(decomposition of the tensor into symmetric $(A_{(ij)}$ and antisymmetric $(A_{[ij]})$ parts), so
$$
A_{ij}B_{ij} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$

But how does
$$
A_{(ij)}B_{(ij)} + A_{[ij]}B_{[ij]} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$
? Thanks

If $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$ which I am not sure how to show.
 
dwsmith said:
If $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$ which I am not sure how to show.

Yes nevermind I was looking at your solution backwards. Breaking up $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)}$ into elements it all canceled out except
$$
\frac{1}{2}(A_{ij}B_{ij} - A_{ji}B_{ji})
$$
so if that equals zero we are good...
 
wmccunes said:
Yes nevermind I was looking at your solution backwards. Breaking up $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)}$ into elements it all canceled out except
$$
\frac{1}{2}(A_{ij}B_{ij} - A_{ji}B_{ji})
$$
so if that equals zero we are good...

Yup
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K