Tensor multiplication 3 dimesnsions

  • Context: MHB 
  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Multiplication Tensor
Click For Summary
SUMMARY

The discussion focuses on tensor multiplication in three dimensions, specifically the decomposition of tensors into symmetric and antisymmetric parts. The equation $A_{ij}B_{ij} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})$ is established, where $A_{(ij)}$ and $A_{[ij]}$ represent the symmetric and antisymmetric components of tensor A, respectively. The participants confirm that the expression $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$ holds true under certain conditions, leading to the conclusion that $\frac{1}{2}(A_{ij}B_{ij} - A_{ji}B_{ji})$ must equal zero for the multiplication to be valid.

PREREQUISITES
  • Understanding of tensor algebra and operations
  • Familiarity with symmetric and antisymmetric tensor decomposition
  • Knowledge of matrix multiplication and properties
  • Basic concepts of linear algebra
NEXT STEPS
  • Study the properties of symmetric and antisymmetric tensors in depth
  • Learn about tensor contraction and its applications
  • Explore advanced topics in tensor calculus
  • Investigate the implications of tensor multiplication in physics and engineering
USEFUL FOR

This discussion is beneficial for mathematicians, physicists, and engineers who work with tensor analysis, particularly in fields such as continuum mechanics and general relativity.

Dustinsfl
Messages
2,217
Reaction score
5
\begin{alignat*}{3}
A_{ij}B_{ij} & = & (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})\\
& = & A_{(ij)}B_{(ij)} + A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} + A_{[ij]}B_{[ij]}
\end{alignat*}
$$
A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = \frac{1}{2}(A_{ji}B_{ij} - A_{ij}B_{ji})
$$
Can I then say $A_{ji}B_{ij} = C_{jj} = C_{3\times 3}$ and $A_{ij}B_{ji} = C_{ii} = C_{3\times 3}$?
Therefore, $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$.
 
Physics news on Phys.org
Dustin, I think you basically solved it in line 1, since
$$
A_{ij} = A_{(ij)} + A_{[ij]}
$$
(decomposition of the tensor into symmetric $(A_{(ij)}$ and antisymmetric $(A_{[ij]})$ parts), so
$$
A_{ij}B_{ij} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$

But how does
$$
A_{(ij)}B_{(ij)} + A_{[ij]}B_{[ij]} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$
? Thanks
 
wmccunes said:
Dustin, I think you basically solved it in line 1, since
$$
A_{ij} = A_{(ij)} + A_{[ij]}
$$
(decomposition of the tensor into symmetric $(A_{(ij)}$ and antisymmetric $(A_{[ij]})$ parts), so
$$
A_{ij}B_{ij} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$

But how does
$$
A_{(ij)}B_{(ij)} + A_{[ij]}B_{[ij]} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$
? Thanks

If $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$ which I am not sure how to show.
 
dwsmith said:
If $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$ which I am not sure how to show.

Yes nevermind I was looking at your solution backwards. Breaking up $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)}$ into elements it all canceled out except
$$
\frac{1}{2}(A_{ij}B_{ij} - A_{ji}B_{ji})
$$
so if that equals zero we are good...
 
wmccunes said:
Yes nevermind I was looking at your solution backwards. Breaking up $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)}$ into elements it all canceled out except
$$
\frac{1}{2}(A_{ij}B_{ij} - A_{ji}B_{ji})
$$
so if that equals zero we are good...

Yup
 

Similar threads

  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K