MHB Tensor multiplication 3 dimesnsions

Dustinsfl
Messages
2,217
Reaction score
5
\begin{alignat*}{3}
A_{ij}B_{ij} & = & (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})\\
& = & A_{(ij)}B_{(ij)} + A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} + A_{[ij]}B_{[ij]}
\end{alignat*}
$$
A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = \frac{1}{2}(A_{ji}B_{ij} - A_{ij}B_{ji})
$$
Can I then say $A_{ji}B_{ij} = C_{jj} = C_{3\times 3}$ and $A_{ij}B_{ji} = C_{ii} = C_{3\times 3}$?
Therefore, $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$.
 
Physics news on Phys.org
Dustin, I think you basically solved it in line 1, since
$$
A_{ij} = A_{(ij)} + A_{[ij]}
$$
(decomposition of the tensor into symmetric $(A_{(ij)}$ and antisymmetric $(A_{[ij]})$ parts), so
$$
A_{ij}B_{ij} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$

But how does
$$
A_{(ij)}B_{(ij)} + A_{[ij]}B_{[ij]} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$
? Thanks
 
wmccunes said:
Dustin, I think you basically solved it in line 1, since
$$
A_{ij} = A_{(ij)} + A_{[ij]}
$$
(decomposition of the tensor into symmetric $(A_{(ij)}$ and antisymmetric $(A_{[ij]})$ parts), so
$$
A_{ij}B_{ij} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$

But how does
$$
A_{(ij)}B_{(ij)} + A_{[ij]}B_{[ij]} = (A_{(ij)} + A_{[ij]})(B_{(ij)} + B_{[ij]})
$$
? Thanks

If $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$ which I am not sure how to show.
 
dwsmith said:
If $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)} = 0$ which I am not sure how to show.

Yes nevermind I was looking at your solution backwards. Breaking up $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)}$ into elements it all canceled out except
$$
\frac{1}{2}(A_{ij}B_{ij} - A_{ji}B_{ji})
$$
so if that equals zero we are good...
 
wmccunes said:
Yes nevermind I was looking at your solution backwards. Breaking up $A_{(ij)}B_{[ij]} + A_{[ij]}B_{(ij)}$ into elements it all canceled out except
$$
\frac{1}{2}(A_{ij}B_{ij} - A_{ji}B_{ji})
$$
so if that equals zero we are good...

Yup
 
Back
Top