MHB Tensor Products and Associative Algebras

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    associative Tensor
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Bruce N. Coopersteins book: Advanced Linear Algebra (Second Edition) ... ...

I am focused on Section 10.3 The Tensor Algebra ... ...

I need help in order to get a basic understanding of Definition 10.5 in Section 10.3 ...Definition 10.5 plus some preliminary definitions reads as follows:View attachment 5550
View attachment 5551In the above text from Cooperstein, in Definition 10.5, we read the following:

" ... ... An element $$x \in \mathcal{T}(V)$$ is said to be homogeneous of degree $$d$$ if $$x \in \mathcal{T}_d (V)$$ ... ..."My question is as follows:

How can x be such that $$x \in \mathcal{T}(V)$$ and $$x \in \mathcal{T}_d (V)$$ ... does not seem possible to me ... ...

... ... because ... ...

... if $$x \in \mathcal{T}(V)$$ then $$x$$ will have the form of an infinite sequence as in the following:$$x = (x_0, x_1, x_2, \ ... \ ... \ , x_{d-1}, x_d, x_{d+1}, \ ... \ ... \ ... \ ... )
$$where $$x_i \in \mathcal{T}_i (V)$$... ... clearly $$x_d$$ is the $$d$$-th coordinate of $$x$$ and so cannot be equal to $$x$$ ... ..

Can someone please clarify this issue ... clearly I am not understanding this definition ...

Peter
 
Last edited:
Physics news on Phys.org
The elements of $\mathcal{T}(V)$ are *finite* sequences (they are functions with finite support in $I$).

The elements that are homogeneous are tensors that are of the same "rank". For example, an element of $\mathcal{T}_3(V)$ might look like:

$v_1 \otimes v_2 \otimes v_3 + w_1 \otimes w_2 \otimes w_3$ where each $v_i, w_i \in V$.

It's analogous to the degree of a polynomial, where "homogeneous" of degree $d$ would mean all but the coefficients of $x^d$ are 0.

Remember the injections $\epsilon_i : \mathcal{T}_i(V) \to \bigoplus\limits_i \mathcal{T}_i(V)$? An element of $\mathcal{T}(V)$ is homogeneous if it is in the image of a single such injection.

Rank 0 tensors = scalars.
Rank 1 tensors = vectors.
Rank 2 tensors = 2-tensors, etc.

We're going to create a "giant algebra" of tensors of all ranks.
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
Back
Top