(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Different numbers x, y and z are the first three terms of a geometric progression with common ratio r, and also the first, second and fourth terms of an arithmetic progression.

a. Find the value of r.

b. Find which term of the arithmetic progression will next be equal to a term of the geometric progression.

I haven't tackled part b. yet but I'm guessing it must be quite straightforward once r is found, but for now I'm having major issues with a.

2. Relevant equations

So far I've come up with r=y/x=z/y (since all are different versions of the common ratio of the geometric progression), z-y = 2(y-x) (since y-x is the common difference of the arithmetic progression and z-y is the difference between the second and fourth terms) and y-x = y/x.

3. The attempt at a solution

However, I'm confused as to how to combine these equations in order to find r. All of my attempts have turned up hopelessly complex or just plain incorrect. Any suggestions as to the correct and most simple way to go about this would be appreciated, cheers.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Terms of a geometric series and arithmetic series, find common ratio

**Physics Forums | Science Articles, Homework Help, Discussion**