Testing Real or Complex Roots: y=g(x)D^{k}f(x)

Karlisbad
Messages
127
Reaction score
0
For the function ## y=f(x) ## is there a test to prove if its roots are real or either has some complex roots?, or in more general cases:

## y=g(x)D^{k}f(x) ## k>0 and a real D=d/dx number.:rolleyes: :rolleyes:

The question is that sometimes it can be very deceiving to tell if a function has real or complex roots, for example:

## y=exp(2 \pi x)-1 ## has only real roots.. but for real x the function ## y=exp(x^2)+1 ## has only complex roots , but for every real x the function is real.
 
Last edited by a moderator:
Mathematics news on Phys.org
Karlisbad said:
For the function ## y=f(x) ## is there a test to prove if its roots are real or either has some complex roots?, or in more general cases:

## y=g(x)D^{k}f(x) ## k>0 and a real D=d/dx number.:rolleyes: :rolleyes:

The question is that sometimes it can be very deceiving to tell if a function has real or complex roots, for example:

## y=exp(2 \pi x)-1 ## has only real roots.. but for real x the function ## y=exp(x^2)+1 ## has only complex roots , but for every real x the function is real.
A simple test is whether the function is always positive or is always negative. In your second example, ##y = \exp(x^2) + 1##, ##x^2 \ge 0## for all real x, and ##\exp(x^2) \ge 1## for all real x, so adding 1 makes ##\exp(x^2) + 1 \ge 2##. Therefore, this function can't have any real roots.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top