LQG may make predictions that can be experimentally testable in the near future.
The path taken by a photon through a discrete spacetime geometry would be different from the path taken by the same photon through continuous spacetime. Normally, such differences should be insignificant, but http://www.rtn.lt/mi/0302/giovanni.jpg points out that photons which have traveled from distant galaxies may reveal the structure of spacetime. LQG predicts that more energetic photons should travel ever so slightly faster than less energetic photons. This effect would be too small to observe within our galaxy. However, light reaching us from gamma ray bursts in other galaxies should manifest a varying spectral shift over time. In other words, distant gamma ray bursts should appear to start off more bluish and end more reddish. Alternatively, highly energetic photons from gamma ray bursts should arrive a split second sooner than less energetic photons. LQG physicists eagerly await results from space-based gamma-ray spectrometry experiments (GLAST).
2007 will see the launch of GLAST, and (hopefully) the completion and operation of LHC. The results of these experiments will profoundly develop the course of QG. These experiments may establish spontaneously broken supersymmetry, Higgs boson and the Higgs field, extra spatial dimensions, and/or violations of Lorentz invariance.
If GLAST detects violations of Lorentz invariance in the form of energy-dependent photon velocity, in agreement with theoretical calculations, such observations would strongly support LQG. However, string theory would not necessarily be disfavoured, since although it predicts an underlying exact Lorentz symmetry, it is possible that this may be spontaneously broken through a nonzero expectation value of tensor fields.
Other topics where observation may affect the future theoretical development of quantum gravity are dark matter and dark energy.