A-wal said:
You're going to a lot of trouble to explain this stuff to someone who you think is a lost cause.
I didn't say I thought you were a lost cause; I said I didn't think we could make much further progress when we're not even using words the same way. You think you're saying the same things that GR is saying, but just "modified a bit". You think you're just taking GR and tweaking it some to make it fit better with the model you have in your head. *I* think you are flat out contradicting GR; you are building a model in your head that's based on premises that are simply false in GR, and so naturally what comes out looks like nonsense to me.
Right now I'm not even trying to argue which one of us is right. I'm saying that we can't even communicate if we can't agree on the meanings of words. You're using them one way and I'm using them another. Unless we can agree on what the words we're using mean, we're stuck.
The key words that seem to me to be causing confusion are "flat" and "curved" with respect to spacetime itself, and "straight" and "curved" with respect to individual worldlines. Again, please understand: I'm not trying to argue, right now, whether the standard model of GR is right or wrong. I'm simply saying that these are the standard definitions of these words in GR; they are used to refer to the precise physical concepts/measurements I'm going to describe. If you use the words any other way, you're not using them the way standard GR uses them.
Spacetime is
flat if no tidal gravity is present. It is
curved if tidal gravity is present. Tidal gravity is physically measured as follows: take two nearby, point-like (i.e., no internal structure), freely falling objects which are at rest with respect to each other at some instant. If they remain at rest with respect to each other, spacetime is flat; if they do not (i.e., if they either get closer together or farther apart as time passes), spacetime is curved.
A worldline is
straight if an observer traveling along the worldline is freely falling--i.e., feels no weight. A worldline is
curved if an observer traveling along the worldline feels weight--i.e., is not freely falling. The word "accelerated" may also be used to refer to a worldline that is curved, or an observer traveling on such a worldline. However, it is important to remember that this "acceleration" (which is more precisely called "proper acceleration") is *not* the same as "coordinate acceleration", which can be present for freely falling bodies if you adopt non-inertial coordinates. For example, a freely falling rock has "coordinate acceleration" with respect to an observer standing at rest on the surface of the Earth, even though the rock's worldline is straight and the observer's worldline is curved, in the sense of the above definitions of those terms.
If you're going to claim to be using GR, you have to use these words with the above definitions. If you don't--if, for example, you say that tidal gravity and acceleration, in the sense of "proper acceleration", look the same to you--then you're simply saying something that's false (obviously false, from the definitions above), and I don't see the point of responding. If you want to argue for some other model where tidal gravity and "acceleration" (with some other definition you will need to supply for that term) *are* the same, then go ahead, but please first give me a precise definition of what you mean by "acceleration" and how I can measure it physically, so I can see if I agree that it can be "the same" as tidal gravity. (Or for that matter, if you are thinking of something different than what I defined above when you use the term "tidal gravity", then please define it precisely and use some other term, so we can be clear what we're talking about.)
A-wal said:
The speed of light changing in flat space-time is the equivalent of bending in curved space-time.
If you took out the phrase "in flat spacetime", referring to the speed of light changing, and just used this as a description of something that happens in curved spacetime, I would buy it as acceptable (though I still think it's a confusing way of describing how curved spacetime works). But by including the phrase "in flat spacetime", you ruined it. In flat spacetime, the speed of light is the same everywhere. The light cones line up with each other everywhere. There is no tidal gravity, no spacetime curvature. If you think you can somehow finesse "curved" out of that, then you are *not* using the word "curved" the way GR defines it. If you insist on arguing for some model where somehow the statement above makes sense to you, then please give precise definitions of what you mean by the terms, since you obviously can't be using them in the standard senses I defined above.
A-wal said:
I'm not saying GR is wrong and space-time isn't curved. I'm not even offering an alternative. I think the two are the same because whether you view it as acceleration in flat space-time or curvature makes no difference.
If you meant "curvature" as in "a curved
worldline", then this would be OK, since an accelerated worldline (in the sense of "proper acceleration") is a curved worldline (by the definition I gave above), whether spacetime itself is flat or curved. But from the context (and from all the times you've said things like this before), it's evident to me that you meant "curvature" as in "curved
spacetime", and that is *not* the same, or analogous to, or "another view of" acceleration of a worldline, as the terms are used in GR (and as should be obvious from my definitions above).
A-wal said:
THAT'S EXACTLY WHAT I MEANT! If it's a sphere then it's "movement" should remain constant. What you're describing is an oblong because it's speed changes with time. That's not a sphere.
Draw a spacetime diagram, as I suggested. Use just one dimension of space and one of time. Draw a circle (which is the projection of a 4-D sphere into the two dimensions of the diagram), with its center at the origin, and equal radius in all "directions" in the diagram. That means, for example, that the circle passes through the points t = -R, x = 0; t = 0, x = -R; t = 0, x = R; and t = R, x = 0 (where R is the radius of the circle). That is what a "sphere" in spacetime would look like.
Now read up from the bottom of the diagram up (I'm viewing the diagram so that the t axis is vertical and the x-axis is horizontal) and tell me what the circle, which is the "worldline" of the edges of the hole, indicates, physically, as time advances. In particular:
(1) The circle is horizontal at t = -R, x = 0; what does this indicate about the speed at which the two edges of the hole are moving apart at that instant?
(2) The two sides of the circle are both vertical at t = 0, x = -R and t = 0, x = R. What does this indicate about what the two opposite edges of the hole are doing at t = 0?
(3) The circle is horizontal again at t = R, x = 0; what does this indicate about the speed at which the two edges of the hole are moving together at that instant?
A-wal said:
When I say I don't understand it doesn't mean I don't get it. It means I don't understand how it could work that way.
I know that's what you mean. But at the same time:
A-wal said:
But I think I've proved I understand the concepts.
Not to me you haven't. All you've shown me is that you are either unable or unwilling to use the standard terms used in GR in the standard way they are used, to refer to the standard concepts they are supposed to refer to. If you want to bring in other concepts, fine; then define other terms to refer to them. But when you use the terms "flat", "straight", "curved", etc. in a way that is obviously inconsistent with their standard usage, that tells me that you're either unable or unwilling to communicate clearly.
A-wal said:
That doesn't mean I'm saying GR is wrong. I think it's right except that if you want to look at gravity as curved space-time then you have to do exactly the same for acceleration as well.
Read the definitions above again. Notice that I defined "curved spacetime" and "acceleration of a worldline" (in the sense of "proper acceleration") entirely in terms of physical observations--and they're completely different and independent physical observations. So in terms of those definitions, which are the standard ones in GR, the statement of yours that I just quoted is simply false; there is simply no way to "look at" gravity as somehow the same as acceleration. If you think you can, then you're not just trying to extend or supplement GR; you're contradicting it, and as the computer geeks say, "garbage in, garbage out". If you're thinking of something else as "acceleration", then please define it precisely so we can talk about "A-wal's acceleration" without confusing it with something else.
Edit: For clarity, once again, "gravity" in the sense of "curved spacetime" means "tidal gravity" as I defined it above, and *that* is the sense of "gravity" for which there is no way to "look at" it as the same as acceleration (in the sense of "proper acceleration"). If you're using "gravity" in some other sense, then "gravity" in your sense isn't the same as curved spacetime.