The binding energy per nucleon of tritium

Click For Summary
SUMMARY

The discussion centers on the binding energy per nucleon of tritium and its relationship to mass energy calculations. Participants clarify that the binding energy, often referred to as unbinding energy, is the energy required to disassemble an atom into its constituent nucleons. The binding energy for tritium is calculated to be approximately 2.85 MeV per nucleon, derived from the mass-energy equivalence and the energy contributions from nucleons and kinetic energy. The key takeaway is that the mass energy of an atom is less than the sum of the masses of its nucleons due to the binding energy released during nucleon formation.

PREREQUISITES
  • Understanding of mass-energy equivalence (E=mc²)
  • Familiarity with nuclear physics concepts, specifically binding energy
  • Knowledge of tritium and helium isotopes
  • Basic grasp of energy conservation in nuclear reactions
NEXT STEPS
  • Study the concept of binding energy in nuclear physics
  • Learn about mass-energy calculations for different isotopes
  • Explore the differences between binding energy and unbinding energy
  • Investigate the implications of binding energy on nuclear stability
USEFUL FOR

Students and professionals in nuclear physics, physicists studying atomic structure, and anyone interested in the energy dynamics of nuclear reactions.

Redwaves
Messages
134
Reaction score
7
Homework Statement
The binding energy per nucleon of the ##^3 He## nucleus is 2.6 MeV. Deduce the binding energy per nucleon of tritium from the following information: (1) The mass energies of isolated protons, neutrons and electrons are 938.3 MeV, 939,6 MeV and 0.5 MeV. (2) Tritium decays by the reaction ##^3 H ---> ^3 He + e + v##, where kinetic energy of the final particles is 0.0186 MeV. (3) the mass energy of the antineutrino v is negligible on the MeV scale.
Relevant Equations
##E_i = E_f##
##E^2 = \vec{P}^2 c^2 + m^2 c^4##
##E = \gamma mc^2##
Hi,
I know from conservation of energy that ##E_i = E_f##
Thus, ## M_h c^2 + binding energy = M_{he}c^2+ M_e c^2 + K = M_{he}c^2 + 0.5 MeV + 0.0186 MeV##
If I'm right I have to find ##M_{he}c^2##, but something is missing in my understanding, since I don't see how to find that mass energy ##M_{he}c^2##.

Is the binding energy the difference between initial energy and final energy?
Is the mass energy of an atom the sum of all the neutrons, proton and electrons and the binding energy?
 
Physics news on Phys.org
Redwaves said:
Is the mass energy of an atom the sum of all the neutrons, proton and electrons and the binding energy?
It relates to all those, but not quite in that way.
Can you define the binding energy?
Hint: it would be better termed the unbinding energy.
 
haruspex said:
It relates to all those, but not quite in that way.
Can you define the binding energy?
Hint: it would be better termed the unbinding energy.
You are right, but it uses binding in the book.
the unbinding energy is the amount of energy needed to "break" the tritium into the new particles.
 
Redwaves said:
You are right, but it uses binding in the book.
the unbinding energy is the amount of energy needed to "break" the tritium into the new particles.
Yes, but that also applies to the helium, right?
So what is the answer to your question that I quoted in post 2?
 
Yes, but I don't know the way they are related.
Maybe I wasn't clear, but this is the essence of my question.
I though the mass energy was the sum of all the nucleons, electrons and the binding energy of all nucleons and electrons as well.
I know from the statement that the binding energy for the nucleons of helium is ##2.6 \cdot 3##

Is ##E_{he} = M_{he}c^2 + (2.6 \cdot 3) + K## ?
 
Last edited:
Redwaves said:
I though the mass energy was the sum of all the nucleons, electrons and the binding energy of all nucleons and electrons as well.
No, you are still getting it backwards.
If the mass energy of an atom is ##E_m## and its binding energy is ##E_b## then you have to add energy ##E_b## to disassemble it into separate nucleons. So if the energy of that collection of nucleons is ##E_n##, what equation relates those three energies?
Apply that to both the ##^3H## and the ##^3He##.
 
What's the difference between ##E_m## and ##E_n##. The mass energy is not the energy of all the nucleons ?

##M_{he}c^2 = 2P + 1N - (2.6 \cdot 3) = 2808.4 MeV##
##E_0 = 2808.4 + K + 0.5 + k = 2808.94##
##E_0 = M_H c^2 = 2N + 1P - E_b = 2808.94##
##E_B = 8.56##
##8.56 / 3 = 2.85 MeV##

It sound really good, but I'm not sure to understand why the mass energy is the sum of all nucleons - binding energy.
 
Last edited:
Redwaves said:
What's the difference between ##E_m## and ##E_n##. The mass energy is not the energy of all the nucleons ?

##M_{he}c^2 = 2P + 1N - (2.6 \cdot 3) = 2808.4 MeV##
##E_0 = 2808.4 + K + 0.5 + k = 2808.94##
##E_0 = M_H c^2 = 2N + 1P - E_b = 2808.94##
##E_B = 8.56##
##8.56 / 3 = 2.85 MeV##

It sound really good, but I'm not sure to understand why the mass energy is the sum of all nucleons - binding energy.
Maybe I am using the terminology incorrectly. By mass energy of an atom or nucleon of mass m I mean ##mc^2##.
The mass of an atom is less than the sum of the masses of its nucleons. So its mass energy is less than the sum of the mass energies of its nucleons. The difference is the binding energy.
 
The difference is the binding energy.
Is this because it takes that energy to bind the nucleons together. Does it makes sense?
 
  • #10
Redwaves said:
Is this because it takes that energy to bind the nucleons together. Does it makes sense?
No, you still have it backwards!
The binding energy is energy released as a result of the nucleons binding to form the atom. That is why the atom has less mass than the sum of the nucleons that went into making it. To break the atom up again you have to add back the binding energy.
 
  • Informative
  • Like
Likes   Reactions: Tom.G and Redwaves
  • #11
Ah ! I see. Thanks a lot for your help.
 

Similar threads

Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
13
Views
1K
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K