- #1
- 92
- 5
- Homework Statement
- Stars produce energy by nuclear fusion.
One particular fusion reaction between two protons (1
1H) is shown below.
1H1 + 1H1 ----> 2H1 + electron + neutrino
In this reaction 2.2MeV of energy is released.
(a) Only one of the particles shown in the reaction has binding energy.
Determine the binding energy per nucleon of this particle. Explain your answer
- Relevant Equations
- no equations
https://www.ocr.org.uk/Images/471908-question-paper-unit-h556-02-exploring-physics.pdf
24 A right near the end
there is energy relased in this reaction of nuclear fusion but they want the binding energy per nucleon
does that mean the binding energy released, as a gamma photon, per nucleon of the hydrogen atom and not the binding energy which holds the 2 H hydrogen atom together per nucleon ? Essentially what I am asking is , is the mass defect or the " binding energy released" EQUAL to the binding energy which holds the nucleons together as this question phrases it. And does this apply to all decays essentially , i can see the contrast with fission reactions where it releases less energy.. just want to confirm if my train of thought is correct also ... cheers
final question is lepton number conserved in this reaction as we have a lepton number of two on the left but on the right its one for the electron in the 2H1 atom , then 1 for the electron released , so in that case including the neutrino there is three on the right, why is a neutrino released also ? Charge doesn't seem to be conserved either as 0 charge on the left but on the right 1 electron 1 proton from the hydrogen atom and -1 from extra electron, am i missing something??
24 A right near the end
there is energy relased in this reaction of nuclear fusion but they want the binding energy per nucleon
does that mean the binding energy released, as a gamma photon, per nucleon of the hydrogen atom and not the binding energy which holds the 2 H hydrogen atom together per nucleon ? Essentially what I am asking is , is the mass defect or the " binding energy released" EQUAL to the binding energy which holds the nucleons together as this question phrases it. And does this apply to all decays essentially , i can see the contrast with fission reactions where it releases less energy.. just want to confirm if my train of thought is correct also ... cheers
final question is lepton number conserved in this reaction as we have a lepton number of two on the left but on the right its one for the electron in the 2H1 atom , then 1 for the electron released , so in that case including the neutrino there is three on the right, why is a neutrino released also ? Charge doesn't seem to be conserved either as 0 charge on the left but on the right 1 electron 1 proton from the hydrogen atom and -1 from extra electron, am i missing something??