MHB The cumulative hierarchy and the real numbers

hmmmmm
Messages
27
Reaction score
0
We define the cumulative hierarchy as:

$V_0=\emptyset$

$V_{\alpha+1}=\mathcal{P}(V_\alpha)$

If $\lambda$ is a limit ordinal then $V_\lambda=\bigcup_{\alpha<\lambda} V_\alpha$

Then we have a picture of a big V where we keep building sets up from previous ones and each $V_\alpha$ is the class (set?) of all sets formed from the previous stages.

Now I am wondering how we get from here to a construction of the real numbers? I can see that we will have a set of size $|\mathbb{R}|$ by $V_{\omega+2}$ and then we could go on to construct the reals formally via dedekind cuts of cauchy sequences. However are the sets in the hierarchy well founded in which case $\mathbb{R}$ would not be there?

Thanks for any help
 
Physics news on Phys.org
I'm not too sure how to mark a thread as solved or something but my confusion here came from thinking that unions and power sets preserved well ordering, which they do not
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top