B The Effect of Binding Energy on Mass

Dileep Ramisetty
Messages
3
Reaction score
0
TL;DR Summary
The binding energy being within the different system of force or interactions, how does it vary mass?
Starting to explore quantum mechanics, I read strong nuclear force that binds protons and neutron together in nucleus of atom, gives atom its mass. More binding energy means more mass of atom. Hence the query that, for example there are two magnets having a force F1. And we have the same size magnets with higher force F2, when they are placed on weighing machine reads the same weight as the interactions of force are within the system and not with the objects external to system. Similarly, the binding energy being within the system, how does it vary mass.
 
Physics news on Phys.org
Are you referring to magnets or what? Or if binding energy of the magnets would result in a scale showing less mass?

Or atomic nuclei?
 
Dileep Ramisetty said:
TL;DR Summary: The binding energy being within the different system of force or interactions, how does it vary mass?
Generally, the mass of a nucleus is less than the total mass of the constituent protons and neutrons (due to the binding energy, which is energy lost from the system when the nucleus forms). See, for example:

http://hyperphysics.phy-astr.gsu.edu/hbase/NucEne/nucbin.html
 
  • Like
Likes Vanadium 50 and Sagittarius A-Star
Dileep Ramisetty said:
Starting to explore quantum mechanics, I read strong nuclear force that binds protons and neutron together in nucleus of atom, gives atom its mass.

That effect is mainly inside the protons an neutrons. For example:
Wikipedia said:
For protons, the sum of the rest masses of the three valence quarks (two up quarks and one down quark) is approximately 9.4 MeV/c2, while the proton's total mass is about 938.3 MeV/c2.
Source:
https://en.wikipedia.org/wiki/Quantum_chromodynamics_binding_energy
 
  • Like
Likes vanhees71 and PeroK
Dileep Ramisetty said:
I read
Where? Can you give a reference?

Dileep Ramisetty said:
strong nuclear force that binds protons and neutron together in nucleus of atom, gives atom its mass.
Not really. It's not the binding of protons and neutrons, it's the confinement of quarks. Each individual proton and neutron has a mass that is much larger than the sum of the rest masses of its constituent quarks. The remaining mass is believed to be due to energy associated with the strong interaction that confines the quarks inside each individual proton or neutron.

At the level of protons and neutrons combining to make atomic nuclei, the total mass of a given nucleus will be less than the sum of the masses of its individual protons and neutrons; in other words, the binding energy of protons and neutrons in the nucleus is negative, as with ordinary bound systems that we are familiar with.
 
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
So, to calculate a proper time of a worldline in SR using an inertial frame is quite easy. But I struggled a bit using a "rotating frame metric" and now I'm not sure whether I'll do it right. Couls someone point me in the right direction? "What have you tried?" Well, trying to help truly absolute layppl with some variation of a "Circular Twin Paradox" not using an inertial frame of reference for whatevere reason. I thought it would be a bit of a challenge so I made a derivation or...
Back
Top