The Effect of Binding Energy on Mass

Click For Summary

Discussion Overview

The discussion revolves around the relationship between binding energy and mass, particularly in the context of atomic nuclei and the strong nuclear force. Participants explore how binding energy affects mass within systems, comparing it to other forces such as magnetism, and referencing concepts from quantum mechanics.

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant suggests that binding energy contributes to the mass of an atom, questioning how this internal energy affects mass measurements.
  • Another participant seeks clarification on whether the discussion pertains to magnets or atomic nuclei, indicating potential confusion in the analogy used.
  • A reference to Einstein's work on mass-energy equivalence is provided, implying a connection between binding energy and mass.
  • It is noted that the mass of a nucleus is generally less than the sum of its constituent protons and neutrons due to binding energy, which is described as energy lost when the nucleus forms.
  • A participant highlights that the mass of protons and neutrons is influenced by the confinement of quarks, suggesting that the strong interaction contributes significantly to their mass beyond just binding energy.
  • Another participant challenges the initial claim about binding energy, emphasizing that the mass of individual protons and neutrons is greater than the sum of their quark masses, indicating a complex relationship between mass and binding energy.

Areas of Agreement / Disagreement

Participants express differing views on the role of binding energy and the strong nuclear force in determining mass. There is no consensus on the implications of binding energy for mass measurements, and the discussion remains unresolved.

Contextual Notes

Some statements rely on specific definitions of binding energy and mass, and the discussion includes unresolved aspects regarding the relationship between quark confinement and mass contributions.

Dileep Ramisetty
Messages
3
Reaction score
0
TL;DR
The binding energy being within the different system of force or interactions, how does it vary mass?
Starting to explore quantum mechanics, I read strong nuclear force that binds protons and neutron together in nucleus of atom, gives atom its mass. More binding energy means more mass of atom. Hence the query that, for example there are two magnets having a force F1. And we have the same size magnets with higher force F2, when they are placed on weighing machine reads the same weight as the interactions of force are within the system and not with the objects external to system. Similarly, the binding energy being within the system, how does it vary mass.
 
Physics news on Phys.org
Are you referring to magnets or what? Or if binding energy of the magnets would result in a scale showing less mass?

Or atomic nuclei?
 
Dileep Ramisetty said:
TL;DR Summary: The binding energy being within the different system of force or interactions, how does it vary mass?
Generally, the mass of a nucleus is less than the total mass of the constituent protons and neutrons (due to the binding energy, which is energy lost from the system when the nucleus forms). See, for example:

http://hyperphysics.phy-astr.gsu.edu/hbase/NucEne/nucbin.html
 
  • Like
Likes   Reactions: Vanadium 50 and Sagittarius A-Star
Dileep Ramisetty said:
Starting to explore quantum mechanics, I read strong nuclear force that binds protons and neutron together in nucleus of atom, gives atom its mass.

That effect is mainly inside the protons an neutrons. For example:
Wikipedia said:
For protons, the sum of the rest masses of the three valence quarks (two up quarks and one down quark) is approximately 9.4 MeV/c2, while the proton's total mass is about 938.3 MeV/c2.
Source:
https://en.wikipedia.org/wiki/Quantum_chromodynamics_binding_energy
 
  • Like
Likes   Reactions: vanhees71 and PeroK
Dileep Ramisetty said:
I read
Where? Can you give a reference?

Dileep Ramisetty said:
strong nuclear force that binds protons and neutron together in nucleus of atom, gives atom its mass.
Not really. It's not the binding of protons and neutrons, it's the confinement of quarks. Each individual proton and neutron has a mass that is much larger than the sum of the rest masses of its constituent quarks. The remaining mass is believed to be due to energy associated with the strong interaction that confines the quarks inside each individual proton or neutron.

At the level of protons and neutrons combining to make atomic nuclei, the total mass of a given nucleus will be less than the sum of the masses of its individual protons and neutrons; in other words, the binding energy of protons and neutrons in the nucleus is negative, as with ordinary bound systems that we are familiar with.
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
1
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K