The equipotential surface of a system of two unequal charges

  • Thread starter Thread starter R A V E N
  • Start date Start date
  • Tags Tags
    Elecrostatics
Click For Summary

Homework Help Overview

The discussion revolves around the equipotential surface of a system comprising two unequal oppositely charged point charges. The original poster presents a mathematical approach to derive the equation of a circle representing the equipotential surface where the potential is zero, focusing on the relationship between the distances from the charges and their magnitudes.

Discussion Character

  • Mathematical reasoning, Assumption checking

Approaches and Questions Raised

  • The original poster attempts to derive the equation of the equipotential surface and seeks clarification on the steps leading to the final expression. Some participants engage with the mathematical derivation, providing detailed algebraic manipulations to support the original poster's inquiry.

Discussion Status

The discussion includes a constructive exchange of ideas, with one participant offering a detailed breakdown of the algebra involved in the derivation. There is a sense of collaboration, as participants express appreciation for the insights shared, although no consensus on the overall understanding of the problem has been reached.

Contextual Notes

The problem is framed within the context of a textbook lesson on the method of image charges, which may influence the assumptions and approaches taken by the participants.

R A V E N
Messages
63
Reaction score
0
Homework Statement
How equation ##\left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2## is obtained?
Relevant Equations
$$\frac{r_1^2}{r_2^2}=k^2=\frac{(d-x)^2+y^2}{x^2+y^2}$$
$$\left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2$$
We have a system of two unequal oppositely charged point charges, of which ##q_2## is smaller and ##d## is the distance between charges. There is an equipotential spherical surface of potential ##V=0## that encloses a charge of lesser absolute value. The task is to find parameters of that spherical surface, or more precisely circle, since the system is of course illustrated in two dimensions.

system.png
First we take into consideration arbitrary point ##M(x,y)## where ##V=\frac{1}{4\pi\epsilon}\left(\frac{q_1}{r_1}+\frac{q_2}{r_2}\right)##. If we use ##V=0## it's easy to obtain ##\frac{r_1}{r_2}=-\frac{q_1}{q_2}=k## where ##k## is coeficcient of proportionality.

From the illustration, we can see that ##r_1^2=(d-x)^2+y^2## and ##r_2^2=x^2+y^2##. Then we have ##\frac{r_1^2}{r_2^2}=k^2=\frac{(d-x)^2+y^2}{x^2+y^2}## from which ##\left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2## is obtained. This equation is the equation of a circle shown in the illustration with coordinates of the circle center ##x_0=-\frac{d}{k^2-1}##, (##|x_0|=\frac{d}{k^2-1}##), and ##y_0=0##. The radius of the circle (equipotential sphere) is ##R=\frac{kd}{k^2-1}=k|x_0|##. How the equation ##\left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2## is derived?

For ##q_1## we have ##q_1=2Q##
and for ##q_2## we have ##q_2=−Q## which gives ##k=2##, but I don't see how that can help. Also, this problem uses the method of image charges because it comes after the lesson in my textbook where the method of image charges is explained.
 

Attachments

  • system.png
    system.png
    4.7 KB · Views: 132
Last edited:
Physics news on Phys.org
Hi,

I think your question

R A V E N said:
How the equation ##\left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2## is derived?
is asking to explain the steps in 'from which'
R A V E N said:
Then we have ##\ \frac{r_1^2}{r_2^2}=k^2=\frac{(d-x)^2+y^2}{x^2+y^2}\ ##from which ##\ \left(x+\frac{d}{k^2-1}\right)^2+y^2=\left(\frac{kd}{k^2-1}\right)^2\ ## is obtained
right ?

Well, with $$\begin{align*}
k^2&=\frac{(d-x)^2+y^2}{x^2+y^2}\\ \mathstrut \\
k^2 x^2 + k^2 y^2&=x^2 -2dx +d^2 +y^2\\ \mathstrut \\
(k^2-1) x^2 + 2dx -d^2 + (k^2-1) y^2&=0\\ \mathstrut \\
x^2 + \left ({2d\over k^2-1} \right ) \,x - {d^2\over k^2-1} + y^2&=0\\ \mathstrut \\
\left (x + {d\over k^2-1} \right)^2 -\left ({d\over k^2-1}\right )^2 - {d^2\over k^2-1} +y^2 &=0\\ \mathstrut \\
\left (x + {d\over k^2-1} \right)^2 +y^2 &=\left ({d\over k^2-1}\right )^2 + {d^2\over k^2-1}\\ \mathstrut \\
\left (x + {d\over k^2-1} \right)^2 +y^2 &={d^2\over\left ( {k^2-1}\right )^2} + {d^2\left ( k^2-1\right ) \over \left (k^2-1\right )^2} \\ \mathstrut \\
\left (x + {d\over k^2-1} \right)^2 +y^2 &=\left ({dk\over k^2-1} \right )^2
\end{align*}$$
 
  • Wow
  • Informative
  • Like
Likes   Reactions: MatinSAR, DeBangis21 and R A V E N
Yes! Thank you very much! Very creative and intelligent answer!
 
It's not rocket science,, just a bit of high school math -- and I was really glad the target expression was given.

It also was a good ##\LaTeX## exercise :smile:

##\ ##
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 11 ·
Replies
11
Views
7K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
6
Views
2K
Replies
16
Views
3K