MHB The Existence of Symmetric Matrices in Subspaces

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a question I am stuck on. Hope you can provide some hints. :)

Problem:

Let \(U\) be a 4-dimensional subspace in the space of \(3\times 3\) matrices. Show that \(U\) contains a symmetric matrix.
 
Physics news on Phys.org
I suppose you mean a symmetric matrix different from $0.$ If $\mathcal{S}$ is the subspace of the symmetric matrices, then $\dim \mathcal{S}=\dfrac{3(3+1)}{2}=6.$ If $\dim (\mathcal{S}\cap U)=0,$ then by the Grassmann theorem $\dim (U+\mathcal{S})=6+4-0=10>9=\dim \mathbb{K}^{3\times 3}$ (contradiction). So, there exists a symmetric and non null matrix belonging to $U.$
 
Fernando Revilla said:
I suppose you mean a symmetric matrix different from $0.$ If $\mathcal{S}$ is the subspace of the symmetric matrices, then $\dim \mathcal{S}=\dfrac{3(3+1)}{2}=6.$ If $\dim (\mathcal{S}\cap U)=0,$ then by the Grassmann theorem $\dim (U+\mathcal{S})=6+4-0=10>9=\dim \mathbb{K}^{3\times 3}$ (contradiction). So, there exists a symmetric and non null matrix belonging to $U.$

Yes indeed, it should be different from the zero matrix. Thanks very much for your reply. I understand it fully. :)
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top