MHB The Existence of Symmetric Matrices in Subspaces

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a question I am stuck on. Hope you can provide some hints. :)

Problem:

Let \(U\) be a 4-dimensional subspace in the space of \(3\times 3\) matrices. Show that \(U\) contains a symmetric matrix.
 
Physics news on Phys.org
I suppose you mean a symmetric matrix different from $0.$ If $\mathcal{S}$ is the subspace of the symmetric matrices, then $\dim \mathcal{S}=\dfrac{3(3+1)}{2}=6.$ If $\dim (\mathcal{S}\cap U)=0,$ then by the Grassmann theorem $\dim (U+\mathcal{S})=6+4-0=10>9=\dim \mathbb{K}^{3\times 3}$ (contradiction). So, there exists a symmetric and non null matrix belonging to $U.$
 
Fernando Revilla said:
I suppose you mean a symmetric matrix different from $0.$ If $\mathcal{S}$ is the subspace of the symmetric matrices, then $\dim \mathcal{S}=\dfrac{3(3+1)}{2}=6.$ If $\dim (\mathcal{S}\cap U)=0,$ then by the Grassmann theorem $\dim (U+\mathcal{S})=6+4-0=10>9=\dim \mathbb{K}^{3\times 3}$ (contradiction). So, there exists a symmetric and non null matrix belonging to $U.$

Yes indeed, it should be different from the zero matrix. Thanks very much for your reply. I understand it fully. :)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
5K
Replies
14
Views
3K
  • · Replies 4 ·
Replies
4
Views
6K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
2
Views
2K