MHB The Existence of Symmetric Matrices in Subspaces

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a question I am stuck on. Hope you can provide some hints. :)

Problem:

Let \(U\) be a 4-dimensional subspace in the space of \(3\times 3\) matrices. Show that \(U\) contains a symmetric matrix.
 
Physics news on Phys.org
I suppose you mean a symmetric matrix different from $0.$ If $\mathcal{S}$ is the subspace of the symmetric matrices, then $\dim \mathcal{S}=\dfrac{3(3+1)}{2}=6.$ If $\dim (\mathcal{S}\cap U)=0,$ then by the Grassmann theorem $\dim (U+\mathcal{S})=6+4-0=10>9=\dim \mathbb{K}^{3\times 3}$ (contradiction). So, there exists a symmetric and non null matrix belonging to $U.$
 
Fernando Revilla said:
I suppose you mean a symmetric matrix different from $0.$ If $\mathcal{S}$ is the subspace of the symmetric matrices, then $\dim \mathcal{S}=\dfrac{3(3+1)}{2}=6.$ If $\dim (\mathcal{S}\cap U)=0,$ then by the Grassmann theorem $\dim (U+\mathcal{S})=6+4-0=10>9=\dim \mathbb{K}^{3\times 3}$ (contradiction). So, there exists a symmetric and non null matrix belonging to $U.$

Yes indeed, it should be different from the zero matrix. Thanks very much for your reply. I understand it fully. :)
 
Thread 'Derivation of equations of stress tensor transformation'
Hello ! I derived equations of stress tensor 2D transformation. Some details: I have plane ABCD in two cases (see top on the pic) and I know tensor components for case 1 only. Only plane ABCD rotate in two cases (top of the picture) but not coordinate system. Coordinate system rotates only on the bottom of picture. I want to obtain expression that connects tensor for case 1 and tensor for case 2. My attempt: Are these equations correct? Is there more easier expression for stress tensor...
Back
Top