The magnitudes of the applied force F and the frictional force f of a wheel

AI Thread Summary
The discussion centers on calculating the applied force F and the frictional force f for a solid wheel rolling without sliding. The calculations lead to the conclusion that F equals 3/2 Ma and f equals Ma/2, which corresponds to option E. Participants emphasize the importance of using moments about the mass center or a fixed point for accuracy in angular acceleration problems. The method used for calculations is confirmed as correct, but there is some uncertainty about the approach. Overall, the calculations and reasoning align with the physics principles governing rolling motion.
hidemi
Messages
206
Reaction score
36
Homework Statement
A solid wheel with mass M, radius R, and rotational inertia MR^2/2, rolls without sliding on a horizontial surface. A horizontal force F is applied to the axle and the center of mass has an acceleration a. The magnitudes of the applied force F and the frictional force f of the surface, respectively, are:

a. F = Ma, f = 0
b. F = Ma, f = Ma/2
c. F = 2Ma, f = Ma
d. F = 2Ma, f = Ma/2
e. F = 3Ma/2, f = Ma/2

Ans: E
Relevant Equations
F R = (1/2 MR^2 + MR^2 ) a/R
I calculate in this way as follows and get a correct answer. Howere I am not sure if I am using the right way.

F R = (½ MR^2 + MR^2 ) a/R
F = 3/2 Ma
F - f = Ma
f = 3/2 Ma - Ma = Ma/2
 
Physics news on Phys.org
hidemi said:
Homework Statement:: A solid wheel with mass M, radius R, and rotational inertia MR^2/2, rolls without sliding on a horizontial surface. A horizontal force F is applied to the axle and the center of mass has an acceleration a. The magnitudes of the applied force F and the frictional force f of the surface, respectively, are:

a. F = Ma, f = 0
b. F = Ma, f = Ma/2
c. F = 2Ma, f = Ma
d. F = 2Ma, f = Ma/2
e. F = 3Ma/2, f = Ma/2

Ans: E
Relevant Equations:: F R = (1/2 MR^2 + MR^2 ) a/R

I calculate in this way as follows and get a correct answer. Howere I am not sure if I am using the right way.

F R = (½ MR^2 + MR^2 ) a/R
F = 3/2 Ma
F - f = Ma
f = 3/2 Ma - Ma = Ma/2
The safest way with angular acceleration is to take moments about either the mass centre or a fixed point.
You have effectively taken the second option.
 
  • Like
Likes Delta2 and hidemi
haruspex said:
The safest way with angular acceleration is to take moments about either the mass centre or a fixed point.
You have effectively taken the second option.
Thanks for commenting.
 
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
I was thinking using 2 purple mattress samples, and taping them together, I do want other ideas though, the main guidelines are; Must have a volume LESS than 1600 cubic centimeters, and CAN'T exceed 25 cm in ANY direction. Must be LESS than 1 kg. NO parachutes. NO glue or Tape can touch the egg. MUST be able to take egg out in less than 1 minute. Grade A large eggs will be used.
Back
Top