The magnitudes of the applied force F and the frictional force f of a wheel

AI Thread Summary
The discussion centers on calculating the applied force F and the frictional force f for a solid wheel rolling without sliding. The calculations lead to the conclusion that F equals 3/2 Ma and f equals Ma/2, which corresponds to option E. Participants emphasize the importance of using moments about the mass center or a fixed point for accuracy in angular acceleration problems. The method used for calculations is confirmed as correct, but there is some uncertainty about the approach. Overall, the calculations and reasoning align with the physics principles governing rolling motion.
hidemi
Messages
206
Reaction score
36
Homework Statement
A solid wheel with mass M, radius R, and rotational inertia MR^2/2, rolls without sliding on a horizontial surface. A horizontal force F is applied to the axle and the center of mass has an acceleration a. The magnitudes of the applied force F and the frictional force f of the surface, respectively, are:

a. F = Ma, f = 0
b. F = Ma, f = Ma/2
c. F = 2Ma, f = Ma
d. F = 2Ma, f = Ma/2
e. F = 3Ma/2, f = Ma/2

Ans: E
Relevant Equations
F R = (1/2 MR^2 + MR^2 ) a/R
I calculate in this way as follows and get a correct answer. Howere I am not sure if I am using the right way.

F R = (½ MR^2 + MR^2 ) a/R
F = 3/2 Ma
F - f = Ma
f = 3/2 Ma - Ma = Ma/2
 
Physics news on Phys.org
hidemi said:
Homework Statement:: A solid wheel with mass M, radius R, and rotational inertia MR^2/2, rolls without sliding on a horizontial surface. A horizontal force F is applied to the axle and the center of mass has an acceleration a. The magnitudes of the applied force F and the frictional force f of the surface, respectively, are:

a. F = Ma, f = 0
b. F = Ma, f = Ma/2
c. F = 2Ma, f = Ma
d. F = 2Ma, f = Ma/2
e. F = 3Ma/2, f = Ma/2

Ans: E
Relevant Equations:: F R = (1/2 MR^2 + MR^2 ) a/R

I calculate in this way as follows and get a correct answer. Howere I am not sure if I am using the right way.

F R = (½ MR^2 + MR^2 ) a/R
F = 3/2 Ma
F - f = Ma
f = 3/2 Ma - Ma = Ma/2
The safest way with angular acceleration is to take moments about either the mass centre or a fixed point.
You have effectively taken the second option.
 
  • Like
Likes Delta2 and hidemi
haruspex said:
The safest way with angular acceleration is to take moments about either the mass centre or a fixed point.
You have effectively taken the second option.
Thanks for commenting.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Back
Top