Force on a Cyclist: Net Force Calculation

  • Thread starter DarkEnergy890
  • Start date
  • Tags
    Force
In summary, the question is poorly posed and contains multiple errors. It is unclear what is meant by "friction" - whether it refers to rolling resistance or traditional friction. The given solution is also incorrect, with a sign error involving the "friction" force and a meaningless statement about the rider exerting a force of 450N.
  • #1
DarkEnergy890
14
3
Homework Statement
A cyclist exerts a constant force of 450 N causing the bicycle to accelerate at 4.8 m s-2
until reaches a velocity of 20 m s-1 due west. Given that the combined mass of the
cyclist plus the bicycle is 120 kg, calculate (i) the net force (ii) the frictional force.
Relevant Equations
F=ma
My understanding is that the Net Force = Force Applied + Frictional Force. The net force is F=ma, so net force = 576N. Now 576N=450N + Frictional force, so frictional force has to be 126N.

My confusion is this:
1. Force is a vector, and the frictional force opposes the direction of motion. Therefore shouldn't friction turn out to be a negative?
2. If the applied force is 450N, then how can the net force be 576N, more than the force applied? If anything, I think that friction should cause the net force to be less than the applied force.

Here is the marking scheme (model answer) : https://prnt.sc/tyhQTEm0WKAw

Thanks!
 
Physics news on Phys.org
  • #2
DarkEnergy890 said:
My confusion is this:
1. Force is a vector, and the frictional force opposes the direction of motion. Therefore shouldn't friction turn out to be a negative?
The model answer clearly show the friction acts east, which is a direction. Directions can be north, south, east, west etc. Not just ##\pm##.
DarkEnergy890 said:
2. If the applied force is 450N, then how can the net force be 576N, more than the force applied? If anything, I think that friction should cause the net force to be less than the applied force.
A bicycle has pedals, gears and wheels that allow a force to be magnified, as it were. That's why it's possible to cycle uphill comfortably in low gear.
DarkEnergy890 said:
Here is the marking scheme (model answer) : https://prnt.sc/tyhQTEm0WKAw
That answer looks completely wrong to me. The force of the cyclist on the bicycle produces an equal and opposite force of the bicyle on the cyclist. These are therefore internal forces that cancel out.

The entire accelerating force must come from static friction of the tyres on the ground. Draw a free-body diagram and you'll see that the force from the ground on the bicycle must be ##576 \ N## (in the direction of the acceleration).
 
  • Like
Likes DarkEnergy890
  • #3
PeroK said:
That's why it's possible to cycle uphill comfortably in low gear.
Speak for yourself! :wink:
 
  • Like
  • Haha
Likes Lnewqban and erobz
  • #4
As @PeroK observes, the question is poorly posed and the given solution is nonsense.
I'll assume this is on the horizontal (which should have been stated).

By "friction" the author appears to mean rolling resistance. Confusing that with friction is a novice error.

Saying that the rider exerts a force of 450N is pretty meaningless. The rider cannot be exerting a net horizontal force on the bike or the two would part company. The vertical force, mg, is irrelevant. If it means the force exerted on one pedal (no cleats, then) we would need to know about the gearing etc.
To make any use of it to solve the questions asked, we have to assume it means that, in the absence of losses, the cyclist would cause there to be a propulsive force of 450N on the bike+rider system. The actual force would come from static friction on the tyres acting forwards.

Finally, there is the sign error involving the "friction". Having written the equation as ##F_{net}=F_{bike}-F_{friction}##, ##F_{friction}## must be being taken as positive to the East. Hence, getting -126N means the force is 126N West, aiding the acceleration!

Where does this sloppy problem come from?
 
  • Like
Likes DarkEnergy890, jbriggs444 and berkeman
  • #5
haruspex said:
As @PeroK observes, the question is poorly posed and the given solution is nonsense.
I'll assume this is on the horizontal (which should have been stated).

By "friction" the author appears to mean rolling resistance. Confusing that with friction is a novice error.

Saying that the rider exerts a force of 450N is pretty meaningless. The rider cannot be exerting a net horizontal force on the bike or the two would part company. The vertical force, mg, is irrelevant. If it means the force exerted on one pedal (no cleats, then) we would need to know about the gearing etc.
To make any use of it to solve the questions asked, we have to assume it means that, in the absence of losses, the cyclist would cause there to be a propulsive force of 450N on the bike+rider system. The actual force would come from static friction on the tyres acting forwards.

Finally, there is the sign error involving the "friction". Having written the equation as ##F_{net}=F_{bike}-F_{friction}##, ##F_{friction}## must be being taken as positive to the East. Hence, getting -126N means the force is 126N West, aiding the acceleration!

Where does this sloppy problem come from?
Thanks for the detailed reply! This problem came from a "pre-paper" company - not an official exam, so that's probably why there are so many mistakes in it.
 

1. What is the formula for calculating the net force on a cyclist?

The formula for calculating the net force on a cyclist is Fnet = ma, where Fnet represents the net force, m represents the mass of the cyclist, and a represents the acceleration.

2. How does the net force on a cyclist affect their motion?

The net force on a cyclist determines the acceleration of their motion. If the net force is positive, the cyclist will accelerate in the direction of the force. If the net force is negative, the cyclist will decelerate or move in the opposite direction of the force.

3. What factors contribute to the net force on a cyclist?

The net force on a cyclist is influenced by several factors, including the cyclist's mass, the force of gravity, air resistance, and any external forces such as friction or wind.

4. How does the cyclist's position affect the net force calculation?

The cyclist's position does not directly affect the net force calculation. However, their position can impact the forces acting upon them, which in turn can affect the net force. For example, if the cyclist is going uphill, the force of gravity will be greater, resulting in a larger net force.

5. How can the net force on a cyclist be increased or decreased?

The net force on a cyclist can be increased or decreased by adjusting the force they apply to the pedals, their mass, or the external forces acting upon them. For example, pedaling harder will increase the force applied, resulting in a larger net force. Alternatively, if the cyclist reduces their mass or encounters less air resistance, the net force will decrease.

Similar threads

  • Introductory Physics Homework Help
Replies
4
Views
628
  • Introductory Physics Homework Help
Replies
6
Views
2K
  • Introductory Physics Homework Help
Replies
12
Views
208
  • Introductory Physics Homework Help
Replies
10
Views
3K
  • Introductory Physics Homework Help
Replies
9
Views
2K
  • Introductory Physics Homework Help
Replies
9
Views
2K
  • Introductory Physics Homework Help
Replies
4
Views
1K
  • Introductory Physics Homework Help
2
Replies
43
Views
2K
  • Introductory Physics Homework Help
Replies
9
Views
4K
  • Introductory Physics Homework Help
Replies
4
Views
4K
Back
Top