The missing factor of 2π in reciprocal lattice calculations

Click For Summary
SUMMARY

The discussion centers on the missing factor of 2π in reciprocal lattice calculations, specifically contrasting the treatment in Kittel's "Introduction to Solid State Physics" and Hammond's "The Basics of Crystallography and Diffraction." Kittel includes the factor in the relation between the translation vector in real space and reciprocal space, while Hammond omits it, leading to discrepancies in derived equations such as the structure factor. The participants seek clarification on the normalization of the 2π factor and its implications for the structure factor equation.

PREREQUISITES
  • Understanding of X-ray diffraction principles
  • Familiarity with reciprocal lattice concepts
  • Knowledge of Bragg's law and its applications
  • Basic proficiency in complex numbers and phase angles in physics
NEXT STEPS
  • Review Kittel's "Introduction to Solid State Physics" for reciprocal lattice definitions
  • Examine Hammond's "The Basics of Crystallography and Diffraction" for derivations of the structure factor
  • Study the normalization of phase factors in diffraction equations
  • Explore the relationship between frequency and angular frequency in wave mechanics
USEFUL FOR

Students and researchers in solid state physics, crystallography, and materials science who are analyzing diffraction patterns and reciprocal lattice structures.

Wrichik Basu
Science Advisor
Insights Author
Gold Member
Messages
2,180
Reaction score
2,690
##\require{physics}## Recently, I wet my feet in X-ray diffraction a bit more than what is usually covered in standard solid state physics textbooks at the undergrad level, like Kittel. Two good books that I chanced upon included Christopher Hammond, The Basics of Crystallography and Diffraction and B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction. I will, however, stick to Kittel and Hammond in this thread.

In Kittel, the relation between the translation vector in real (or direct) space, ##\va{R},## and that in the reciprocal space, ##\va{G},## is given by $$\begin{align}
&\phantom{implies} \mathrm{e}^{i \va{G} \vdot \va{R}} = 1 \\
&\implies \va{G} \vdot \va{R} = 2\pi m; \quad m \in \mathbb{Z}.
\end{align}$$
If I write ##\va{G} = h \va{g}_1 + k \va{g}_2 + \ell \va{g}_3 ## and ##\va{R} = \sum\limits_{i=1}^3 n_i \va{a}_i## with ##n_i \in \mathbb{Z},## we can write $$\begin{equation}
\va{g}_i \vdot \va{a}_j = 2 \pi \delta_{ij} \label{eq:g_dot_a_kittel}
\end{equation}$$according to Kittel Chapter 2, and I can follow the reasoning fine.

In Hammond, however, this relation is written as $$\begin{equation}
\va{g}_i \vdot \va{a}_j = \delta_{ij},
\end{equation}$$omitting the ##2\pi.##

In all derivations throughout Chapter 8 in Hammond, this relation is used. Thus, ##\abs{ \va{G}_{hk\ell} }## becomes ##1/d_{hk\ell},## the radius of Ewald's sphere becomes ##1/\lambda,## and the vector form of Bragg's law, $$\begin{equation}
\dfrac{\vu{s} - \vu{s}_0}{\lambda} = \va{G}_{hk\ell}, \label{eq:bragg_law_vector}
\end{equation}$$when combined with the first Laue equation, becomes $$\begin{align}
&\phantom{\implies} \va{a} \vdot \qty( \vu{s} - \vu{s}_0 ) = n_x \lambda \nonumber \\
&\implies \va{a} \vdot \va{G}_{hk\ell} \cdot \lambda = n_x \lambda \nonumber \\
&\implies h = n_x,
\end{align}$$with a factor of ##2\pi## missing everywhere.

Things aggravate when Hammond derives the equation for the structure factor in Chapter 9, as follows:
structure_factor.png


The position vector ##\va{r}_1## is written as$$\begin{equation}
\va{r}_1 = \sum_{i=1}^3 x_i \va{a}_i
\end{equation}$$where ##\va{a}_i## are the lattice basis vectors, and ##x_i## are \textit{fractions} of the cell edge lengths.

The path difference,$$\begin{align}
\mathrm{P.D.} &= \mathrm{AB} - \mathrm{CD} \nonumber \\
&= \va{r}_1 \vdot \vu{S} - \va{r}_1 \vdot \vu{S}_0 \nonumber \\
&= \va{r}_1 \vdot ( \vu{S} - \vu{S}_0 ).
\end{align}$$
##\because## Bragg's Law is satisfied, we can write using ##\text{eqn.}~\eqref{eq:bragg_law_vector}##,$$\begin{align}
&\phantom{\implies} ( \vu{S} - \vu{S}_0 ) = \lambda \va{G}_{hk\ell} \nonumber\\
&\phantom{ \implies ( \vu{S} - \vu{S}_0 ) } = \lambda \qty( h \va{g}_1 + k \va{g}_2 + \ell \va{g}_3 ).\\
&\implies \mathrm{P.D.} = \lambda \qty( x_1 \va{a}_1 + x_2 \va{a}_2 + x_3 \va{a}_3 ) \vdot \qty( h \va{g}_1 + k \va{g}_2 + \ell \va{g}_3 ) \nonumber \\
&\implies \mathrm{P.D.} = \lambda \qty( h x_1 + k x_2 + \ell x_3 ). \label{eq:path_difference}
\end{align}$$where we have used ##\va{g}_i \vdot \va{a}_j = \delta_{ij}## to arrive at the last step.

The phase angle is given by$$\begin{align}
\phi &= \dfrac{2\pi}{\lambda} \mathrm{P.D.} \nonumber \\
&= 2 \pi \lambda \qty( h x_1 + k x_2 + \ell x_3 ).
\end{align}$$

Adding the scattering amplitudes ##f## with their respective phase angles ##\phi## in the complex plane,$$\begin{equation}
\boxed{F_{hk\ell} = \sum_{n = 1}^N f_n ~ \exp \qty[ 2\pi i \qty( h x_n + k y_n + \ell z_n ) ].}
\end{equation}$$
Note that if I simply put the factor of ##2\pi## in ##\text{eqn.}~\eqref{eq:path_difference},## the expression for the phase angle will have a factor of ##4\pi^2,## so will the expression for structure factor. Now, Wikipedia states that this expression for the structure factor is correct, so I just can't put in the ##2\pi## factor.

Can anyone please explain where the ##2\pi## factor is being normalized? And how do I derive the structure factor equation if I want to stick to the expression used in Kittel, i.e. ##\text{eqn.}~\eqref{eq:g_dot_a_kittel}?##

Interestingly, I just noticed that @ergospherical has also skipped the ##2\pi## factor in one of my previous thread on the Ewald sphere.
 
Last edited:
Physics news on Phys.org
Does the equivalent of Eq. 1 in Hammond have a ##2\pi## in the exponent?
 
Haborix said:
Does the equivalent of Eq. 1 in Hammond have a ##2\pi## in the exponent?
As far as I can see, Hammond has not written the equivalent of Eq. 1 anywhere, at least from Chapters 6 to 9. Chapter 6 deals with the reciprocal lattice, and there, he directly writes ##\va{g}_i \vdot \va{a}_j = \delta_{ij}## owing to the fact that ##\va{g}_1## is ##\perp## to both ##\va{a}_2## and ##\va{a}_3,## and so on. I didn't read through chapters 1-6 because I already studied them from Kittel.
 
I don't have any of the textbooks at hand, but I would guess the two ##\vec{\mathbf{g}}## are related by a factor of ##2\pi##.
 
  • Like
Likes   Reactions: Wrichik Basu
Haborix said:
I don't have any of the textbooks at hand, but I would guess the two ##\vec{\mathbf{g}}## are related by a factor of ##2\pi##.
It's the same as when choosing between f (frequency) and ω (angular frequency). Neither is 'correct' but the one which avoids a page full of π's is easier to write and interpret.
 
  • Like
Likes   Reactions: PhDeezNutz

Similar threads

  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 0 ·
Replies
0
Views
3K
Replies
2
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
Replies
6
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K