The most beautiful chain of equalities I have ever seen

  • Thread starter Thread starter epr1990
  • Start date Start date
  • Tags Tags
    Chain
epr1990
Messages
26
Reaction score
0
I was doing some basic analysis of the Dedekind eta function and some Dirichlet series and the following equality just fell out:

\sum_{k=1}^\infty\frac{\mu (k)-\varphi (k)}{k}\log \left( 1-\frac{1}{\phi^k} \right) = \prod_{k=1}^\infty \left( 1-\frac{1}{\phi^k} \right)^{2\pi i\frac{\mu (k)-\varphi (k)}{k}}

where \mu , \varphi , \phi are the Möbius function, Euler totient function, and golden ratio respectively.

Now, at first, this looks almost nonsensical because it demonstrates equality between a product and its logarithm. I.e. exponentiating gives product=e^product^2*pi*i (or you can take the logarithm if you can see it better this way, personally, I'm better with products than sums, and definitely the logarithm of an infinite sum which you would most likely need to refactor and deal with possible rearrangement issues... yikes). It follows that, in a sense, this form is redundant, for we must have

\left(\prod_{k=1}^\infty \left( 1-\frac{1}{\phi^k} \right)^{\frac{\mu (k)-\varphi (k)}{k}}\right)^{2\pi i} = 1

Furthermore, this implies

\sum_{k=1}^\infty\frac{\mu (k)-\varphi (k)}{k}\log \left( 1-\frac{1}{\phi^k} \right) = 1

and

\prod_{k=1}^\infty \left( 1-\frac{1}{\phi^k} \right)^{\frac{\mu (k)-\varphi (k)}{k}} = e

Finally, using Dirichlet convolution and inversion and the basic properties of the logarithm and geometric series, we can show that
for 0 < x < 1

\sum_{k=1}^\infty\frac{\mu (k)}{k}\log \left( \frac{1}{1-\frac{1}{x^k}} \right) = x

and

\sum_{k=1}^\infty\frac{\varphi (k)}{k}\log \left( \frac{1}{1-\frac{1}{x^k}} \right) = \frac{x}{1-x}

Thus,

\sum_{k=1}^\infty\frac{\mu (k)}{k}\log \left( \frac{1}{1-\frac{1}{\phi^k}} \right) = \frac{1}{\phi}

and

\sum_{k=1}^\infty\frac{\varphi (k)}{k}\log \left( \frac{1}{1-\frac{1}{\phi^k}} \right) = \frac{\frac{1}{\phi}}{1-\frac{1}{\phi}} = \phi

The point of this result is that it suggests a deep relation between the prime numbers and chaos,


I was hoping that anyone who reads this would share their thoughts and insights on this relationship, or possibly similar results.
 
Mathematics news on Phys.org
Sure - google for "prime numbers and chaos math".
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top