I The postulate of Quantum Mechanics and Eigenvalue equation

betelgeuse91
Messages
31
Reaction score
0
According to one of the postulates of quantum mechanics, every measured observable q is an eigenvalue of a corresponding linear Hermitian operator Q. Which means, that q must satisfy the equation Qψ = qψ. But according to Griffiths chapter 3, this equation can only be followed from σQ = 0. It makes no sense to me because not every observable has zero standard deviation. Can someone explain this?
 
Physics news on Phys.org
The exact energy levels (ferinstance) are for idealized situations... real energy levels are best characterised by a line with some thickness appropriate to the uncertainty of the state - which leads to it's stability. So you are learning that the postulates are not exactly true.

You also need to distinguish between uncertainties in the Heisenberg sense and measurement uncertainties arising from the way measurement equipment works.
Real life is messy.
 
  • Like
Likes bhobba
I am only considering idealized theoretical situations. The position of harmonic oscillator, for example, according to the postulate, a measured position value q is an eigenvalue of the equation xψ = qψ. But from this equation we can deduce that σx = 0. This is not true since |ψ|2 is not a single valued function. I am so confused...
 
betelgeuse91 said:
I am only considering idealized theoretical situations. The position of harmonic oscillator, for example, according to the postulate, a measured position value q is an eigenvalue of the equation xψ = qψ. But from this equation we can deduce that σx = 0. This is not true since |ψ|2 is not a single valued function. I am so confused...

The postulate says that if you measure a given observable, the result will be one of the eigenvalues of that observable. However, the system state is not necessarily an eigenstate before you measure; it may be a superposition of several different eigenstates with different eigenvalues and then your measurement may yield any of several different results. Formally, you prepare an ensemble of systems all in the same initial state and measure the observable on each instance. If the initial state is an eigenstate of the observable, you will get the corresponding eigenvalue on every measurement and ##\sigma## will be zero. However, if the initial state is a superposition you will get different results (all eigenvalues of one of the many eigenstates making up the superposition) on the different measurements and ##\sigma## will be non-zero.

For a number of reasons, it is not possible to prepare a system in an exact eigenstate of the position operator, so ##\sigma_x## will always be non-zero.
 
  • Like
Likes bhobba and vanhees71
betelgeuse91 said:
Can someone explain this?
The standard deviation depends on the state. In an eigenstate of ##Q##, there is no uncertainty about the value, so the standard deviation is zero, as it should be.
 
betelgeuse91 said:
I am only considering idealized theoretical situations. The position of harmonic oscillator, for example, according to the postulate, a measured position value q is an eigenvalue of the equation xψ = qψ. But from this equation we can deduce that σx = 0. This is not true since |ψ|2 is not a single valued function. I am so confused...
What they said... plus: what is the probability that a measurement of position will yeild the specific eigenvalue q? Explain how you worked it out so I can see your current understanding and I'll get back to you.

Note: the position operator has continuous eigenvalues, as does momentum.
The particular value for position is one of the allowed eigenvalues.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...

Similar threads

Back
Top