I The postulate of Quantum Mechanics and Eigenvalue equation

betelgeuse91
Messages
31
Reaction score
0
According to one of the postulates of quantum mechanics, every measured observable q is an eigenvalue of a corresponding linear Hermitian operator Q. Which means, that q must satisfy the equation Qψ = qψ. But according to Griffiths chapter 3, this equation can only be followed from σQ = 0. It makes no sense to me because not every observable has zero standard deviation. Can someone explain this?
 
Physics news on Phys.org
The exact energy levels (ferinstance) are for idealized situations... real energy levels are best characterised by a line with some thickness appropriate to the uncertainty of the state - which leads to it's stability. So you are learning that the postulates are not exactly true.

You also need to distinguish between uncertainties in the Heisenberg sense and measurement uncertainties arising from the way measurement equipment works.
Real life is messy.
 
  • Like
Likes bhobba
I am only considering idealized theoretical situations. The position of harmonic oscillator, for example, according to the postulate, a measured position value q is an eigenvalue of the equation xψ = qψ. But from this equation we can deduce that σx = 0. This is not true since |ψ|2 is not a single valued function. I am so confused...
 
betelgeuse91 said:
I am only considering idealized theoretical situations. The position of harmonic oscillator, for example, according to the postulate, a measured position value q is an eigenvalue of the equation xψ = qψ. But from this equation we can deduce that σx = 0. This is not true since |ψ|2 is not a single valued function. I am so confused...

The postulate says that if you measure a given observable, the result will be one of the eigenvalues of that observable. However, the system state is not necessarily an eigenstate before you measure; it may be a superposition of several different eigenstates with different eigenvalues and then your measurement may yield any of several different results. Formally, you prepare an ensemble of systems all in the same initial state and measure the observable on each instance. If the initial state is an eigenstate of the observable, you will get the corresponding eigenvalue on every measurement and ##\sigma## will be zero. However, if the initial state is a superposition you will get different results (all eigenvalues of one of the many eigenstates making up the superposition) on the different measurements and ##\sigma## will be non-zero.

For a number of reasons, it is not possible to prepare a system in an exact eigenstate of the position operator, so ##\sigma_x## will always be non-zero.
 
  • Like
Likes bhobba and vanhees71
betelgeuse91 said:
Can someone explain this?
The standard deviation depends on the state. In an eigenstate of ##Q##, there is no uncertainty about the value, so the standard deviation is zero, as it should be.
 
betelgeuse91 said:
I am only considering idealized theoretical situations. The position of harmonic oscillator, for example, according to the postulate, a measured position value q is an eigenvalue of the equation xψ = qψ. But from this equation we can deduce that σx = 0. This is not true since |ψ|2 is not a single valued function. I am so confused...
What they said... plus: what is the probability that a measurement of position will yeild the specific eigenvalue q? Explain how you worked it out so I can see your current understanding and I'll get back to you.

Note: the position operator has continuous eigenvalues, as does momentum.
The particular value for position is one of the allowed eigenvalues.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...

Similar threads

Back
Top