The resultant intensity of two interfering waves

Click For Summary

Homework Help Overview

The discussion revolves around the resultant intensity of two coherent electromagnetic waves, specifically focusing on their electric field representations and the calculation of intensity based on these fields. The original poster attempts to derive the total intensity from the electric fields given, but encounters a discrepancy with the expected answer.

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore the mathematical derivation of intensity from the electric fields of the waves, questioning the assumptions made about peak versus RMS values. Some participants suggest that the original poster may have missed key factors in their calculations.

Discussion Status

There is an ongoing examination of the problem statement and the assumptions regarding the direction of wave propagation. Some participants provide insights into the nature of intensity calculations and the averaging process involved, while others highlight potential algebraic errors in the original poster's approach.

Contextual Notes

Participants note that the problem statement may have inaccuracies regarding the description of the waves and their propagation direction. There is also mention of the need to consider averages over complete cycles when calculating intensity.

Dom Tesilbirth
Messages
4
Reaction score
1
Homework Statement
Consider the interference of two coherent electromagnetic waves whose electric field vectors are given by ##\overrightarrow{E}_{1}=\widehat{i}E_{0}\cos \omega t## and ##\overrightarrow{E}_{2}=\widehat{j}E_{0}\cos \left( \omega t+\phi \right),## where ##\phi## is the phase difference. The intensity of the resulting wave is given by ##\dfrac{\varepsilon _{0}}{2}\langle E^{2}\rangle##, where ##\langle E^{2}\rangle## in the time average of ##E^{2}.## What is the total intensity?
Relevant Equations
$$I=\dfrac{\varepsilon _{0}}{2}\langle E^{2}\rangle$$
My Try:

The resultant field is given by
$$\begin{aligned}\overrightarrow{E}=\overrightarrow{E}_{1}+\overrightarrow{E}_{2}=\widehat{i} E_{0}\cos \omega t+\widehat{j}E_{0}\cos \left( \omega t+\phi \right) \\
\Rightarrow E^{2}=E_{0}^{2}\cos ^{2}\omega t+E_{0}^{2}\cos ^{2}\left( \omega t+\phi \right) \\
\Rightarrow E^{2}=E_{0}^{2}\left\{ \cos ^{2}\omega t+\cos ^{2}\left( \omega t+\phi \right) \right\} \\
\Rightarrow \langle E^{2}\rangle =E_{0}^{2}\dfrac{\left[ \int ^{t}_{0}\left\{ \cos ^{2}\omega t+\cos ^{2}\left( \omega t+\phi \right) \right\} dt\right] }{\int ^{t}_{0}dt}\\
\Rightarrow \langle E^{2}\rangle =\dfrac{E_{0}^{2}}{t}\times \int ^{t}_{0}\left[ \dfrac{1}{2}\left\{ \left( 1+\cos \left( 2\omega t\right) \right) +\left( 1+\cos \left( 2\left( \omega t+\phi \right) \right) \right) \right\} \right] \\
\Rightarrow \langle E^{2}\rangle =\dfrac{E_{0}^{2}}{2t}\times \int ^{t}_{0}\left( 2+\cos 2\omega t+\cos 2\left( \omega t+\phi \right) \right) dt\\
\Rightarrow \langle E^{2}\rangle =\dfrac{E_{0}^{2}}{2t}\left[ 2t+\dfrac{\sin \omega t}{\omega }+\dfrac{\sin 2\left( \omega t+\phi \right) }{2\omega }\right] \end{aligned}$$
$$\therefore I=\dfrac{\varepsilon _{0}}{2}\langle E^{2}\rangle$$
$$\Rightarrow I=\dfrac{\varepsilon _{0}}{2}\times \dfrac{E_{0}^{2}}{2t}\left[ 2t+\dfrac{\sin \omega t}{\omega }+\dfrac{\sin ^{2}( \omega t+\phi) }{2\omega }\right]$$
But the answer is suppose to be ##\varepsilon _{0}E_{0}^{2}.## How do I get this answer?
 
Last edited:
Physics news on Phys.org
Intensity is the power per unit area. The power from the two waves just add, irrespective of phase.
Eo means the peak electric field, so to find power we need the RMS electric field, which is Eo/√2 .
Intensity of wave 1 = ε (Eo/√2)^2 = ε Eo^2/2
Intensity of wave 2 also = ε Eo^2/2
Total intensity =2 x ε Eo^2/2 = ε Eo^2
When you calculated total intensity by adding the fields I think you might have missed the fact that Eo is the peak rather than the RMS field.
 
  • Like
Likes   Reactions: Dom Tesilbirth
Dom Tesilbirth said:
Homework Statement:: Consider the of two coherent electromagnetic waves whose electric field vectors are given by ##\overrightarrow{E}_{1}=\widehat{i}E_{0}\cos \omega t## and ##\overrightarrow{E}_{2}=\widehat{j}E_{0}\cos \left( \omega t+\phi \right),## where ##\phi## is the phase difference. The intensity of the resulting wave is given by ##\dfrac{\varepsilon _{0}}{2}\langle E^{2}\rangle##, where ##\langle E^{2}\rangle## in the time average of ##E^{2}.## What is the total intensity?
The problem statement is wrong. The factor of 1/2 comes from the averaging process.
$$I = \langle \epsilon_0 E^2 \rangle = \frac 12 \epsilon_0 E_0^2.$$
 
  • Like
Likes   Reactions: Dom Tesilbirth
Dom Tesilbirth said:
But the answer is suppose to be ##\varepsilon _{0}E_{0}^{2}.## How do I get this answer?
Some points to consider….

1. The intensity of a simple, sinusoidal, EM wave is the magnitude of its Poynting vector. In terms of electric field amplitude (E₀), it is ½cε₀E₀². So unless you are using natural units (taking c=1, which you haven't stated) something is wrong!

2.Presumably both waves are meant to be traveling in the same direction (say z) so the equations should be:, for example:

##\overrightarrow{E_1}(z,t)=\widehat{i}E_{0}\cos( \omega t - kz)##
##\overrightarrow{E_2}(z,t)=\widehat{j}E_{0}\cos (\omega t - kz + \phi)##

(This makes the resultant wave elliptically polarised.)

3. Since you have 2 equal amplitude waves traveling in the same direction, then, from consideration of conservation of energy, the total intensity is immediately 2 x ½cε₀E₀² = cε₀E₀². But I guess you are trying to do a formal derivation.

4. You may have made algebra errors after your integration (from t=0 to t). Check.

5. In this context, ‘mean’ values must be taken over an integer number of cycles. (The contribution from a fraction of a cycle must be ignored, which also makes sense when considering averages over long periods). The simplest approach is to take the integral over 1 cycle: t = 0 to t = T (where T = ##\frac {2 \pi}{\omega}##). And, of course, the integral of sin(anything) or cos(anything) over a full cycle is zero, which can save work and algebra errors.
 
  • Like
Likes   Reactions: Delta2 and Dom Tesilbirth
Steve4Physics said:
2.Presumably both waves are meant to be traveling in the same direction (say z) so the equations should be:, for example:

##\overrightarrow{E_1}(z,t)=\widehat{i}E_{0}\cos( \omega t - kz)##
##\overrightarrow{E_2}(z,t)=\widehat{j}E_{0}\cos (\omega t - kz + \phi)##
The problem statement probably should have read "Consider the sum of two coherent electromagnetic waves whose electric field vectors at a certain point are given by..."

Using your equations, setting ##z = 0## yields the equations in the problem statement. Setting ##z## equal to some other constant should yield the same result in the end for ##I##, although the algebra will be messier.
 
  • Like
Likes   Reactions: Dom Tesilbirth
jtbell said:
The problem statement probably should have read "Consider the sum of two coherent electromagnetic waves whose electric field vectors at a certain point are given by..."
I wish I could edit my question again. The actual question reads, “Consider the interference of two coherent electromagnetic waves...” Thank you for your reply.
 
Fixed it for you.
 
  • Like
Likes   Reactions: Dom Tesilbirth
jtbell said:
Using your equations, setting ##z = 0## yields the equations in the problem statement. Setting ##z## equal to some other constant should yield the same result in the end for ##I##, although the algebra will be messier.
I agree. I was (deliberately) leaving it for the OP to deduce this for themselves.
 
  • Like
Likes   Reactions: Dom Tesilbirth

Similar threads

Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
19
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K