- #1
Prathyush
- 212
- 16
I am interested to understand the current theoretical status of Landauer's Principle and related ideas. I am looking for key papers and results in the subject.
I will highlight one key paper.
An improved Landauer principle with finite-size corrections
Abstract:
Landauerʼs principle relates entropy decrease and heat dissipation during logically irreversible processes. Most theoretical justifications of Landauerʼs principle either use thermodynamic reasoning or rely on specific models based on arguable assumptions. Here, we aim at a general and minimal setup to formulate Landauerʼs principle in precise terms. We provide a simple and rigorous proof of an improved version of the principle, which is formulated in terms of an equality rather than an inequality. The proof is based on quantum statistical mechanics concepts rather than on thermodynamic argumentation. From this equality version, we obtain explicit improvements of Landauerʼs bound that depend on the effective size of the thermal reservoir and reduce to Landauerʼs bound only for infinite-sized reservoirs.
I will highlight one key paper.
An improved Landauer principle with finite-size corrections
Abstract:
Landauerʼs principle relates entropy decrease and heat dissipation during logically irreversible processes. Most theoretical justifications of Landauerʼs principle either use thermodynamic reasoning or rely on specific models based on arguable assumptions. Here, we aim at a general and minimal setup to formulate Landauerʼs principle in precise terms. We provide a simple and rigorous proof of an improved version of the principle, which is formulated in terms of an equality rather than an inequality. The proof is based on quantum statistical mechanics concepts rather than on thermodynamic argumentation. From this equality version, we obtain explicit improvements of Landauerʼs bound that depend on the effective size of the thermal reservoir and reduce to Landauerʼs bound only for infinite-sized reservoirs.