Thermal Expansion of a Triangular Frame

Click For Summary
The discussion centers on the thermal expansion of a triangular frame with equal initial lengths for each side. The equation derived from the Pythagorean Theorem suggests a relationship between the coefficients of thermal expansion for the frame's sides. A key question raised is whether the angle at point D can remain a right angle during expansion, given the symmetry and forces at play. It is argued that if angles can change without causing structural failure, the frame could expand while maintaining its equilateral shape. The conversation highlights the complexities of thermal expansion in rigid structures and the assumptions necessary for analyzing such scenarios.
SilverSoldier
Messages
26
Reaction score
3
Homework Statement
##ABC## is an equilateral triangle constructed out of 5 rods, ##AD## and ##DB## having coefficient of expansion ##\alpha##, ##BC## and ##CA## having coefficient of expansion ##\lambda## and ##CD## having coefficient of expansion ##\mu##.
Find in terms of ##\alpha## and ##\lambda## a value for ##\mu## so that rod ##CD## shan't break, when the temperature of the system is increased by ##\theta##, given ##\alpha^2\theta^2##, ##\lambda^2\theta^2## and ##\mu^2\theta^2## are negligible.
Relevant Equations
##e = l\alpha\theta##, where ##e## = expansion, ##l## = initial length, ##\alpha## = coefficient of expansion, and ##\theta## = change in temperature
1623340291194.png

Suppose each side has initial length ##l##. The solution taught to me is as follows.

Considering the lengths of the rods after expansion, we write $$\dfrac{3l^2}{4}\left(1+\mu\theta\right)^2+\dfrac{l^2}{4}\left(1+\alpha\theta\right)^2=l^2\left(1+\lambda\theta\right)^2$$ according to the Pythagorean Theorem, which yields $$\mu=\dfrac{4\lambda-\alpha}{3}.$$ My question is, is there any reason to assume that the angle at ##D## remains a right angle?

The way I understand it, due to symmetry, any horizontal movement of points ##C## and ##D## is prevented by equal and opposite horizontal forces caused at ##C## and ##D##, so ##CD## may only expand vertically, but no such statement could be made about points ##A## and ##B##. So, isn't it possible that it expands into a structure like this?

1623339169714.png

Is it correct to say that the situation described in the solution happens only if ##D## were clamped to a fixed point, or held fixed by some other means?
 
Physics news on Phys.org
SilverSoldier said:
is there any reason to assume that the angle at D remains a right angle?
If the angles of the triangles are permitted to change then there is no reason for anything to break, so you have to assume that any change in an angle constitutes breakage.
 
Suppose that, upon heating, the original triangle expands in a way that it retains its equilateral shape (much like enlarging a photograph). Then all angles will remain the same as @haruspex noted. At the bottom left corner, you will have something like the blue triangle shown below. Any ideas where to go from here?

Equilateral triangles.png
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

Replies
46
Views
3K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
13
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K