Thermal Expansion of a Triangular Frame

Click For Summary
SUMMARY

The discussion centers on the thermal expansion of a triangular frame with equal initial lengths of sides denoted as ##l##. The derived equation $$\dfrac{3l^2}{4}\left(1+\mu\theta\right)^2+\dfrac{l^2}{4}\left(1+\alpha\theta\right)^2=l^2\left(1+\lambda\theta\right)^2$$ leads to the conclusion that $$\mu=\dfrac{4\lambda-\alpha}{3}$$. The participants debate whether the angle at point D remains a right angle during expansion, emphasizing that symmetry prevents horizontal movement at points C and D, allowing only vertical expansion. The discussion concludes that if the angles of the triangles are allowed to change, the structure can expand without breaking, maintaining its equilateral shape.

PREREQUISITES
  • Understanding of thermal expansion principles
  • Familiarity with the Pythagorean Theorem
  • Knowledge of triangular geometry and properties
  • Basic concepts of structural mechanics
NEXT STEPS
  • Explore the implications of thermal expansion on structural integrity
  • Study the effects of clamping on triangular frame stability
  • Investigate the mathematical modeling of thermal expansion in rigid bodies
  • Learn about the behavior of materials under varying temperature conditions
USEFUL FOR

Engineers, physicists, and students studying structural mechanics or thermal dynamics will benefit from this discussion, particularly those interested in the behavior of materials under thermal stress.

SilverSoldier
Messages
26
Reaction score
3
Homework Statement
##ABC## is an equilateral triangle constructed out of 5 rods, ##AD## and ##DB## having coefficient of expansion ##\alpha##, ##BC## and ##CA## having coefficient of expansion ##\lambda## and ##CD## having coefficient of expansion ##\mu##.
Find in terms of ##\alpha## and ##\lambda## a value for ##\mu## so that rod ##CD## shan't break, when the temperature of the system is increased by ##\theta##, given ##\alpha^2\theta^2##, ##\lambda^2\theta^2## and ##\mu^2\theta^2## are negligible.
Relevant Equations
##e = l\alpha\theta##, where ##e## = expansion, ##l## = initial length, ##\alpha## = coefficient of expansion, and ##\theta## = change in temperature
1623340291194.png

Suppose each side has initial length ##l##. The solution taught to me is as follows.

Considering the lengths of the rods after expansion, we write $$\dfrac{3l^2}{4}\left(1+\mu\theta\right)^2+\dfrac{l^2}{4}\left(1+\alpha\theta\right)^2=l^2\left(1+\lambda\theta\right)^2$$ according to the Pythagorean Theorem, which yields $$\mu=\dfrac{4\lambda-\alpha}{3}.$$ My question is, is there any reason to assume that the angle at ##D## remains a right angle?

The way I understand it, due to symmetry, any horizontal movement of points ##C## and ##D## is prevented by equal and opposite horizontal forces caused at ##C## and ##D##, so ##CD## may only expand vertically, but no such statement could be made about points ##A## and ##B##. So, isn't it possible that it expands into a structure like this?

1623339169714.png

Is it correct to say that the situation described in the solution happens only if ##D## were clamped to a fixed point, or held fixed by some other means?
 
  • Like
Likes   Reactions: Delta2
Physics news on Phys.org
SilverSoldier said:
is there any reason to assume that the angle at D remains a right angle?
If the angles of the triangles are permitted to change then there is no reason for anything to break, so you have to assume that any change in an angle constitutes breakage.
 
Suppose that, upon heating, the original triangle expands in a way that it retains its equilateral shape (much like enlarging a photograph). Then all angles will remain the same as @haruspex noted. At the bottom left corner, you will have something like the blue triangle shown below. Any ideas where to go from here?

Equilateral triangles.png
 

Similar threads

Replies
46
Views
5K
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
13
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K