A Thermal stresses in the stress tensor

Click For Summary
The discussion centers on incorporating thermal stresses into the mechanical stress tensor for viscous flow. The original equation presented is deemed appropriate for incompressible fluids, but corrections are suggested for compressible fluids, particularly regarding thermal expansion effects. The correct formulation for a compressible viscous fluid includes terms for both pressure and shear stress, with thermal effects typically considered negligible. However, the user seeks to couple temperature changes directly to the Navier equations, indicating a focus on thermal stresses rather than expansion. The conversation highlights the complexities of modeling thermal effects in fluid dynamics, especially in applications like sintering.
hunt_mat
Homework Helper
Messages
1,816
Reaction score
33
TL;DR
How to I include thermal stresses in the stress tensor
Suppose I have a mechanical stress tensor \sigma. Say I have the stress tensor for viscous flow:
\boldsymbol{\sigma}=-p\mathbf{I}+\frac{1}{2}(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})
If the thermal flux is given by \boldsymbol{\sigma}_{th}=\alpha T\mathbf{I}, so I have a total flux as:
\boldsymbol{\sigma}=-p\mathbf{I}+\frac{1}{2}(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})+\alpha T\mathbf{I}
Is this correct?
 
Physics news on Phys.org
hunt_mat said:
TL;DR Summary: How to I include thermal stresses in the stress tensor

Suppose I have a mechanical stress tensor \sigma. Say I have the stress tensor for viscous flow:
\boldsymbol{\sigma}=-p\mathbf{I}+\frac{1}{2}(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})
If the thermal flux is given by \boldsymbol{\sigma}_{th}=\alpha T\mathbf{I}, so I have a total flux as:
\boldsymbol{\sigma}=-p\mathbf{I}+\frac{1}{2}(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})+\alpha T\mathbf{I}
Is this correct?
Your original equation is for an incompressible fluid.
 
The correct equation for a compressible viscous fluid without thermal expansion is \boldsymbol{\sigma}=-(p+\frac{2\mu}{3 }\nabla \centerdot \mathbf u)\mathbf{I}+\mu(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})
With thermal expansion, this becomes \boldsymbol{\sigma}=-(p+\frac{2\mu}{3 }(\nabla \centerdot \mathbf u-\alpha \frac{D T}{Dt}))\mathbf{I}+\mu(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})The thermal expansion term is usually considered negligible in determining the stress.
 
Last edited:
Chestermiller said:
The correct equation for a compressible viscous fluid without thermal expansion is \boldsymbol{\sigma}=-(p+\frac{2\mu}{3 }\nabla \centerdot \mathbf u)\mathbf{I}+\mu(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})
With thermal expansion, this becomes \boldsymbol{\sigma}=-(p+\frac{2\mu}{3 }\nabla \centerdot \mathbf u-\alpha \frac{\partial T}{\partial t})\mathbf{I}+\mu(\nabla\mathbf{u}+(\nabla\mathbf{u})^{T})The thermal expansion term is usually considered negligible in determining the stress.
Hi, thanks for your reply. I'm not interested in expansion, but thermal stresses within a material. I want temperature to be coupled to Navier's equations. I would include the \partial_{t}T term as part of the stress tensor to fully couple the derivative?

I'm thinking of sintering with this application, and how thermal expansion affects everything.
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

Replies
1
Views
334
  • · Replies 5 ·
Replies
5
Views
489
Replies
29
Views
1K
Replies
3
Views
429
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 30 ·
2
Replies
30
Views
3K
Replies
1
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
6K
  • · Replies 4 ·
Replies
4
Views
1K