Thermo Final Review - specific heat for ideal gas

AI Thread Summary
The discussion clarifies that the internal energy of an ideal gas, expressed as U = C_V T, is not limited to constant-volume processes, as internal energy is a state variable dependent solely on temperature. The term C_V in this context is a proportionality constant, not the specific heat capacity, and can be interpreted as the total heat capacity of the gas. The formula can also be represented as U = nC_V T, where n denotes the number of moles, making C_V the molar specific heat capacity. This understanding supports the conclusion that the correct answer to the posed question is "all of the above." Overall, the relationship between internal energy and temperature is key to grasping the concept for ideal gases.
dwsky
Messages
1
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: why is the answer "all of the above"?

Could someone explain why the correct answer is all of the above? I understand that Cv implies a constant volume process, but what about the other two?
1701587269400.png
 
Last edited by a moderator:
Physics news on Phys.org
Because internal energy of an ideal gas depends only on its temperature.
 
  • Like
Likes Chestermiller
dwsky said:
I understand that Cv implies a constant volume process, but what about the other two?
The fact that you can write the internal energy of an ideal gas as ##U = C_{_V} T## doesn't mean that this formula can only be used in constant-volume processes. Internal energy is a state variable and for an ideal gas ##U## is proportional to the absolute temperature. In the formula ##U = C_{_V} T##, think of ##C_{_V}## as just a number (with units) that gives the proportionality constant between ##U## and ##T##.

Note that in the formula ##U = C_{_V} T##, ##C_{_V}## is not the specific heat capacity. It's the total heat capacity which takes into account the amount of gas. Often, you see the formula written as ##U = nC_{_V} T## where ##n## is the number of moles and ##C_{_V}## now represents the molar specific heat capacity.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top