Thermo Final Review - specific heat for ideal gas

AI Thread Summary
The discussion clarifies that the internal energy of an ideal gas, expressed as U = C_V T, is not limited to constant-volume processes, as internal energy is a state variable dependent solely on temperature. The term C_V in this context is a proportionality constant, not the specific heat capacity, and can be interpreted as the total heat capacity of the gas. The formula can also be represented as U = nC_V T, where n denotes the number of moles, making C_V the molar specific heat capacity. This understanding supports the conclusion that the correct answer to the posed question is "all of the above." Overall, the relationship between internal energy and temperature is key to grasping the concept for ideal gases.
dwsky
Messages
1
Reaction score
0
Thread moved from the technical forums to the schoolwork forums
TL;DR Summary: why is the answer "all of the above"?

Could someone explain why the correct answer is all of the above? I understand that Cv implies a constant volume process, but what about the other two?
1701587269400.png
 
Last edited by a moderator:
Physics news on Phys.org
Because internal energy of an ideal gas depends only on its temperature.
 
  • Like
Likes Chestermiller
dwsky said:
I understand that Cv implies a constant volume process, but what about the other two?
The fact that you can write the internal energy of an ideal gas as ##U = C_{_V} T## doesn't mean that this formula can only be used in constant-volume processes. Internal energy is a state variable and for an ideal gas ##U## is proportional to the absolute temperature. In the formula ##U = C_{_V} T##, think of ##C_{_V}## as just a number (with units) that gives the proportionality constant between ##U## and ##T##.

Note that in the formula ##U = C_{_V} T##, ##C_{_V}## is not the specific heat capacity. It's the total heat capacity which takes into account the amount of gas. Often, you see the formula written as ##U = nC_{_V} T## where ##n## is the number of moles and ##C_{_V}## now represents the molar specific heat capacity.
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top