What Is the Final State of Water and Ice After Mixing?

Click For Summary
SUMMARY

The final state of the system after mixing 0.9 L of water at 20°C with 360 g of ice at -20°C results in a final temperature of 0°C. The calculations reveal that there are 50 moles of water and 20 moles of ice present in the system. The energy required to bring the water to 0°C is -75,300 J, while the energy needed to warm the ice to 0°C is 15,228 J, leaving 60,072 J available for melting. Since this energy is insufficient to melt all the ice, some ice remains unmelted at thermal equilibrium.

PREREQUISITES
  • Understanding of thermodynamics, specifically heat transfer and phase changes.
  • Familiarity with molar calculations and conversions (e.g., grams to moles).
  • Knowledge of specific heat capacities (Cp) for ice and water.
  • Ability to apply the first law of thermodynamics in isolated systems.
NEXT STEPS
  • Study the concept of phase equilibrium in thermodynamic systems.
  • Learn about the calculations involved in heat transfer during phase changes.
  • Explore the implications of specific heat capacity in different materials.
  • Investigate the first law of thermodynamics and its applications in real-world scenarios.
USEFUL FOR

This discussion is beneficial for students in physical chemistry, thermodynamics enthusiasts, and educators seeking to deepen their understanding of heat transfer and phase changes in isolated systems.

psychkub
Messages
3
Reaction score
0
1. You have 0.9 L of water in an insulated (thermally isolated) cup at 20 C. You add 360 g of ice at −20 C in the cup to cool the water. Describe the final state of your system in terms of (i) number of moles of ice (ii) number of moles of water and (iii) the final temperature.



2.
Cp, ice=38.07J-1mole-1
Cp, liquid water=75.3JK-1mol-1
\DeltaHmelting = 6.007kJmol-1




3.
First thing I did was find how many moles of water and ice I had (I'm aware I'm using rounded figures for the molar masses)

0.9L * 1000g/L * 1mol H20/18g/mol = 50mol H20
360g of ice * 1mol H20/18g/mol = 20mol ice

It's an isolated system so I know that the final temp of the water will equal that of the ice and hence I can say
-qwater = qice or
nCliquid(Tf-Ti) = nCice(Tf-Ti) + n\DeltaHmelting

I did the calculations:
-(50)(75.3)(Tf-293) = (20)(38.07)(Tf-253) + (20)(6.007x103)

And I get Tf = 259.7K

Someone in class told me that Tf should be greater than 0, which if it is, that would make calculating the moles of water at the end soooo much easier, so either they are wrong, or I am doing something wrong.

Can anyone help me out?

Thanks!
 
Physics news on Phys.org
psychkub said:
-(50)(75.3)(Tf-293) = (20)(38.07)(Tf-253) + (20)(6.007x103)
[/b]

This equation isn't right. There are three cases to consider. If there is so much ice that it doesn't even melt, then the \Delta H term doesn't appear because no melting happens. If there is an amount of ice that makes some of it melt, but not all of it, you will have an equation that is similar to the one above, but the 'n' in front of \Delta H will only be the amount that melts. Finally, all the ice could melt, and then the melted ice could heat up. In this case you don't have nCice(Tf-Ti), you have nCice(0-Ti) since the ice melts at 0C, and then after that it's heat capacity switches to the liquid heat capacity.

You need to figure out what case you're in first.
 
LeonhardEuler said:
This equation isn't right. There are three cases to consider. If there is so much ice that it doesn't even melt, then the \Delta H term doesn't appear because no melting happens. If there is an amount of ice that makes some of it melt, but not all of it, you will have an equation that is similar to the one above, but the 'n' in front of \Delta H will only be the amount that melts. Finally, all the ice could melt, and then the melted ice could heat up. In this case you don't have nCice(Tf-Ti), you have nCice(0-Ti) since the ice melts at 0C, and then after that it's heat capacity switches to the liquid heat capacity.

You need to figure out what case you're in first.

So in order to figure out what case I'm in do I calculate the energy it takes to bring water from 20C to 0C, so

(50)(75.3)(0-20) = -75,300J

Then figure out the amount of energy it takes to bring the ice from -20C to 0, so

(20)(38.07)(0- (-20)) = 15,228

-75,300+15,228 = 60,072 left to melt the ice

So there is enough energy to bring the ice to 0C, now I need to figure out if there is enough energy to melt the ice. So,

n\DeltaH - (20)(6007)= 120,140J to melt all the ice.

So I there is not enough energy to melt all the ice (120140J-60,072 = 60,068J more needed to melt all the ice), so the final temp would be 0C since there is a mixture of both ice and water.

But now, how do I figure out how much ice I have left over?

do I just use algebra to solve for the number of moles left from 60,072J = n\Deltafusion?
 
psychkub said:
So in order to figure out what case I'm in do I calculate the energy it takes to bring water from 20C to 0C, so

(50)(75.3)(0-20) = -75,300J

Then figure out the amount of energy it takes to bring the ice from -20C to 0, so

(20)(38.07)(0- (-20)) = 15,228

-75,300+15,228 = 60,072 left to melt the ice

So there is enough energy to bring the ice to 0C, now I need to figure out if there is enough energy to melt the ice. So,

n\DeltaH - (20)(6007)= 120,140J to melt all the ice.

So I there is not enough energy to melt all the ice (120140J-60,072 = 60,068J more needed to melt all the ice), so the final temp would be 0C since there is a mixture of both ice and water.

But now, how do I figure out how much ice I have left over?

do I just use algebra to solve for the number of moles left from 60,072J = n\Deltafusion?

Exactly! :smile:
 
Thank you for your help LeonhardEuler!
 

Similar threads

Replies
12
Views
1K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
6K
  • · Replies 7 ·
Replies
7
Views
10K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 4 ·
Replies
4
Views
7K