- #1
FranzDiCoccio
- 342
- 41
Hi,
in every explanation of thin film interference I came across, little or nothing is said as to why the layer of transparent material creating the effect should be thin.
What would go wrong if that is not the case?
I'm asking because it seems to me that, in principle, the mathematic explanation of the phenomenon would work for (admittedly very ideal) "thick films" too.
What is the point here? Perhaps that a macroscopic layer, however smooth, has "imperfections" on a scale much bigger than the wavelength of the light? I guess that these would spoil any interference.
I think that with careful deposition techniques one could create a very even "macroscopic" layer. That should exhibit the same interference patterns of a thin film, right?
I also thought of light absorption, but I think that this is not a good explanation... After all some macroscopically thick materials are pretty transparent.
Thanks a lot for any insight
Franz
in every explanation of thin film interference I came across, little or nothing is said as to why the layer of transparent material creating the effect should be thin.
What would go wrong if that is not the case?
I'm asking because it seems to me that, in principle, the mathematic explanation of the phenomenon would work for (admittedly very ideal) "thick films" too.
What is the point here? Perhaps that a macroscopic layer, however smooth, has "imperfections" on a scale much bigger than the wavelength of the light? I guess that these would spoil any interference.
I think that with careful deposition techniques one could create a very even "macroscopic" layer. That should exhibit the same interference patterns of a thin film, right?
I also thought of light absorption, but I think that this is not a good explanation... After all some macroscopically thick materials are pretty transparent.
Thanks a lot for any insight
Franz