MHB Tia's question at Yahoo Answers (Derivative of f^{-1})

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
Click For Summary
The discussion focuses on proving that the function f(x) = x^3 - 1 is one-to-one by demonstrating that if f(s) = f(t), then s must equal t, confirming injectivity. It also establishes that f is surjective, as for any real number y, there exists an x such that y = f(x). Consequently, f is bijective, allowing the definition of its inverse function, f^{-1}(x) = √[3]{x^3 + 1}. The derivative of the inverse function is derived as (f^{-1})'(x) = x^2 / √[3]{(x^3 + 1)^2} for x ≠ -1. This comprehensive explanation aids in understanding the properties of the function and its inverse.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

**Show that f is one-to-one on its domain.

**Find the derivative of f^-1, where f^-1 is the inverse function of f.

The "-1" is not being raised to anything in the first part (meaning f(x)=x^3-1) by the way, just the "3", please help with this and show how to work it, I am soo lost, would really appreciate it. Thanks.

Here is a link to the question:

Consider the function f(x)=x^3-1...? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Tia, $$\begin{aligned}f(s)=f(t)&\Rightarrow s^3-1=t^3-1\\&\Rightarrow s^3=t^3\\&\Rightarrow \sqrt[3]{s^3}=\sqrt[3]{t^3}\\&\Rightarrow s=t\\&\Rightarrow f\mbox{ is injective}\end{aligned}$$ On the other hand, consider $y\in\mathbb{R}$. Let's see that there exists $x\in\mathbb{R}$ such that $y=f(x)$ (i.e. $f$ is surjective) $$\begin{aligned}y=f(x)&\Leftrightarrow y=x^3-1\\&\Leftrightarrow x^3=y+1\\&\Leftrightarrow x=\sqrt[3]{y^3+1}\end{aligned}$$ So, $f:\mathbb{R}\to \mathbb{R}$ is bijective and $f^{-1}(x)=\sqrt[3]{x^3+1}$. Then, $$\left(f^{-1}\right)'(x)=\ldots=\frac{x^2}{\sqrt[3]{(x^3+1)^2}}\qquad (x\neq -1)$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K