Time Dilation due to Gravity: Formula Explained

Dynamotime
Messages
14
Reaction score
0
If possible can someone tell me what is the formula of time dilation for an object

Which theoretically is Not in orbit, Not moving but close in off to an black hole to be affect by the gravity of it.

It will be greatly appreciated.
 
Physics news on Phys.org
Time dilation in the context of gravity is usually used to refer to the ratio T1/T2 where
* T1 is the time between two spacetime events, E1 and E2, as measured by an observer O1 in a strong gravitational field; and
* T2 is the time between E1 and E2, as measured by an observer O2 that is far away and in an inertial reference frame.

A formula for this ratio, assuming the gravitational source is a spherically symmetric, non-rotating mass is

$$\sqrt{1-\frac{r_s}{r}}$$

where ##r## is the Swarzschild radial coordinate of O1 (which is analogous to the distance from the centre of the gravitational source) and ##r_s## is the Swarzschild radius of the source, which is the size to which the source would have to collapse to become a black hole. You can see from this formula that, as observer O1 approaches the event horizon of a black hole from the outside, the ratio heads towards 0.
 
  • Like
Likes bcrowell and Dynamotime
andrewkirk said:
Time dilation in the context of gravity is usually used to refer to the ratio T1/T2 where
* T1 is the time between two spacetime events, E1 and E2, as measured by an observer O1 in a strong gravitational field; and
* T2 is the time between E1 and E2, as measured by an observer O2 that is far away and in an inertial reference frame.

A formula for this ratio, assuming the gravitational source is a spherically symmetric, non-rotating mass is

$$\sqrt{1-\frac{r_s}{r}}$$

where ##r## is the Swarzschild radial coordinate of O1 (which is analogous to the distance from the centre of the gravitational source) and ##r_s## is the Swarzschild radius of the source, which is the size to which the source would have to collapse to become a black hole. You can see from this formula that, as observer O1 approaches the event horizon of a black hole from the outside, the ratio heads towards 0.
Actually, for this formula to be valid, both observers must be static - hovering via rockets or resting on a surface. Further, for that form to be valid, O2 must be hovering at 'infinity', stationary with respect to the spherically symmetric source. It is true that at infinity, stationary = inertial, but the characteristic that holds for the generalization where O2 is not at infinity is stationary rather than inertial. Stationary has proper acceleration and is not inertial except at infinity.
 
  • Like
Likes bcrowell and Dynamotime
Thank you so much for info
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
Thread 'Relativity of simultaneity in actuality'
I’m attaching two figures from the book, Basic concepts in relativity and QT, by Resnick and Halliday. They are describing the relativity of simultaneity from a theoretical pov, which I understand. Basically, the lightning strikes at AA’ and BB’ can be deemed simultaneous either in frame S, in which case they will not be simultaneous in frame S’, and vice versa. Only in one of the frames are the two events simultaneous, but not in both, and this claim of simultaneity can be done by either of...

Similar threads

Back
Top