Thank you very much!
Now please bear with me.
Nugatory said:
Only if you’re willing to insist that there’s something special about the frame in which the Earth is at rest. “Some similar frame” won’t necessarily produce the same result. (And have you followed the advice earlier in this thread to look at the relativity of simultaneity? You have to understand that before you can make any conclusions about clocks that are not at the the same place at the same time).
Yes, I personally prefer Earth's frame of reference because it seems more natural and as a novice it seems to help understand it better.
Yes, I did watch a video about "Einstein train simultaneity". This one: youtube.com/watch?v=wteiuxyqtoM
Janus said:
However, if you consider things in terms of fuel used for distance traveled, you get a different result. Accelerating at 10 m/s for .95 yrs by Newtonian rules will get you ~0.47 ly from the Earth and moving at 0.99c.
Accelerating at 10m/s for 2.52 yrs ship time, will also get you up to 0.99c, but 5.8 ly from Earth (measured in the Earth frame). So, while you have burned 2.65 times as much fuel, you've gone 12.3 times further from the Earth. In order for you to get 5.8 ly from the Earth accelerating under Newtonian rules, you would have to accelerate for 3.3 yrs. You will have burned 30% more fuel and taken 30% longer (compared to ship time) So if I wanted to get to the nearest star in the shortest amount of ship time, while using less fuel, Relativity is my friend.
I'm sorry but I'm confused and my head hurts. "2.52 yrs ship time" is dilated according to the reference frame of earth. Therefore, I think, "3.3 yrs" won't be different from "2.52 yrs ship time" once the pilot completes his mission and his mission's duration is checked using Earth's clock; or in other words once the ship time is converted into Earth time using proper factor, it would be same as 3.3 yrs.
"under Newtonian rules, you would have to accelerate for
3.3 yrs. You will have burned
30% more fuel and taken
30% longer (compared to ship time)" - In other words, yes, it would take a Newtonian longer because your clock was running slow. But I don't see how a Newtonian would need to spend more fuel, especially when Newtonian rocket doesn't 'suffer' from any relativistic mass effect, informally speaking, its mass doesn't increase.
Once again, I don't understand why it'd take "30% more fuel" according to Newtonian calculation; in post #53,
https://www.physicsforums.com/threa...mass-and-fuel-consumption.984366/post-6299827,
@Nugatory confirmed that a Newtonian would say that more fuel has been consumed because Newtonian antiquated model doesn't take into account relativistic effects of mass as it moves.
I understand that the special relativity models the nature more accurately but I'm looking at it from perspective of Newtonian antiquated model. I'm also not focusing on spacetime because even Einstein himself didn't really consider it when he came up with the special theory of relativity. I'm ignoring the general relativity at this stage. Newtonian model uses fixed flow of time and no distinction between rest mass and moving mass.
Janus said:
For him, the Earth spent a good chunk of his trip aging slower than him( during the outbound and return legs of the trip), and it was only during that period when he was accelerating in order to reverse direction back towards the Earth that the Earth aged faster. His view of Earth aging slow, Earth aging fast, Earth aging slow, is just as valid as the Earth's view of him just aging slow.
I googled the effects of acceleration on time and found few things which I didn't know before. I had thought that only when you move fast with respect to an inertial frame, your time gets slow down, i.e. dilated. It looks like acceleration also affects the time in a different manner; I hope it's not a consequence of general relativity because I'm only focusing on special relativity. The theory of general relativity models the acceleration as gravity .
For example, have a look below on the quote. My apologies if it's not entirely accurately but I needed your guidance if it's correct. For example, if a rocket is moving away from Earth to some other planet B. The rocket clock appears to slow down with respect to an Earth observer but a rocket observer notices Earth's clock slowing down. If the rocket is headed directly toward planet B, how would the rocket observer see planet B's clock and how rocket clock appears to planet B observer? I'm assuming rocket is traveling at constant velocity.
According to what is said below, as the rocket accelerates the rocket observer sees Earth clock slowing down more but sees planet B clock moving faster. Is it correct?
"
Moving fast only. Actually, just moving at all, though you won't notice it much at low speeds.
Acceleration causes another time effect, which seems different but drops out of the same math. Clocks "above" you, or in the forward direction of acceleration, tick faster. Clocks "below" you tick slower. This happens even when you're rigidly attached to the clock, and both you and the clock are accelerated."
Source:
https://qr.ae/T3zzwJ
Well, if you think I'm making no sense then I'd understand if you don't comment.This is an addition to what I said earlier towards the end of my last post.
"
In 1908, three years after Einstein first published his special theory of relativity, the mathematician Hermann Minkowski introduced his four-dimensional “spacetime” interpretation of the theory. Einstein initially dismissed Minkowski’s theory, remarking that “since the mathematicians have invaded the theory of relativity I do not understand it myself anymore.” Yet Minkowski’s theory soon found wide acceptance among physicists, including eventually Einstein himself, whose conversion to Minkowski’s way of thinking was engendered by the realization that he could profitably employ it for the formulation of his new theory of gravity. The validity of Minkowski’s mathematical “merging” of space and time has rarely been questioned by either physicists or philosophers since Einstein incorporated it into his theory of gravity. Physicists often employ Minkowski spacetime with little regard to the whether it provides a true account of the physical world as opposed to a useful mathematical tool in the theory of relativity. Philosophers sometimes treat the philosophy of space and time as if it were a mere appendix to Minkowski’s theory. In this critical study, Joseph Cosgrove subjects the concept of spacetime to a comprehensive examination and concludes that Einstein’s initial assessment of Minkowksi was essentially correct."
Source:
https://www.palgrave.com/gp/book/9783319726304#aboutBookThe following part is my personal view and I also attempt to explain why I'm finding the special theory of relativity difficult.
As another example, let's consider a thought experiment. If you are asked to go around the Earth at 0.9c speed for one second using fixed amount of fuel. Let's ignore the air friction, gravity, and suppose the rocket starts and end its journey at 0.9c without any acceleration, also ignore centripetal acceleration. The speed of light is 300000 km/s and circumference of Earth is 40075 km. Using Newtonian calculation, in one second you should be able to go around the Earth 6.74 times. A Newtonian standing on Earth would see the rocket going slow, length contracted in the direction of travel but I don't think the Newtonian would be able to notice that the rocket has become more massive. Therefore, after one second the Newtonian would clearly see that the rocket hasn't circled the Earth 6.74 times. If the rocket is taken down once Newtonian clock ticks one second, it would also be noticed that for whatever amount of journey it has covered (which is clearly going to be less than 6.74 times Earth circumference), it has consumed more fuel as it should. Forget what the pilot of rocket has to say about it. Do I make any sense?
Also, for example, in the example shown in the video mentioned above about simultanety, youtube.com/watch?v=wteiuxyqtoM , if there were two light sensors at the ends of train, the person on train would also agree that both flashes occurred at the same time. Yes, if the train is some kind of planet and there was no way of communicating with a person situated outside somewhere above that planet, then the conclusion of person riding the 'train/planet' would be acceptable. Perhaps, the example is a bad example but online tutorials are full of such examples.
In my humble view, the theory of special relativity, is presented more like pure math rather than applied math. Personally, I have nothing against pure math but applied math seems more interesting although the very foundation of applied math is in fact the pure math. I have been looking for a book which presents theories of relativity, especially special relativity, more from 'human' and 'physical' perspective but no success. I will elaborate on it below.
A cathode ray tube takes into account of relativistic effects on length and mass of electrons. An electron has length contraction, time dilation, and its inertial mass increases. I wouldn't really care how I appear to the electron - if it sees me length contracted unicorn or alien then that's not my problem :). Most important to me, as a novice, is to understand how an electron looks as it travels at very high speed. I can imagine later, how the world appears to an electron if it were a living being!
"
Cathode ray tube (CRT) televisions create pictures by shooting electrons at a phosphorous screen. These electrons are accelerated to high velocities, near 20- 30% of the speed of light. Remember from special relativity that as a particle approaches speeds near light speed, the energy required to propel the particle is increased. Magnets in the television are responsible for placing the electrons in the correct configuration on the screen. They must account for the relativistic effects on these electrons or the picture created will be out of focus (Akpan, 2015)". Source:
https://engagedscholarship.csuohio.edu/cgi/viewcontent.cgi?article=1071&context=tdr "
These electrons are moving at roughly a third of the speed of light. This means that engineers had to account for length contraction when designing the magnets that directed the electrons to form an image on the screen. Without accounting for these effects, the electron beam's aim would be off and create unintelligible images." Source:
https://www.iflscience.com/physics/4-examples-relativity-everyday-life/amp.html,
https://www.quora.com/Is-length-con...chard-Muller-3?ch=12&share=c5c2c623&srid=gk8x . The same goes for the ladder paradox,
https://en.wikipedia.org/wiki/Ladder_paradox, if I build a barn and let the ladder move through it at really fast speed, then it's the ladder which contracts in my physical world. The ladder is in my world or the world of barn and ultimately the ladder's movement is not permanent, it has to stop ultimately.
As an another example, the guy gives a very nice introduction to special theory of relativity 'from human point of view', youtube.com/watch?v=umLcFAI5SZg . He won $400000 award for it as well.
Helpful links:
1:
http://web.pdx.edu/~egertonr/ph311-12/relativ.htm
2:
http://www.exo.net/~pauld/activities/physics/relativitytelevision.htm
3:
https://www.iflscience.com/physics/4-examples-relativity-everyday-life/amp.html
4: youtube.com/watch?v=mnJuKXhFaQ8
5:
https://physics.stackexchange.com/q...he-speed-of-light-vary-in-non-inertial-frames
6:
http://www.alternativephysics.org/book/MuonRelativity.htm
7:
https://physics.stackexchange.com/q...ncy-of-speed-of-light-in-gr?noredirect=1&lq=1