Time evolution of a particle in momentum space

Foracle
Messages
29
Reaction score
8
Homework Statement
At time t=0, the wave function of a particle is
##\Psi(x,0)=(\frac{\alpha}{\pi})^{\frac{1}{4}}e^{ik_{0}x-ax^{2}/2}##
##\alpha## and ##k_{0}## are real constants

What is the wavefunction at time t in momentum space, ##\tilde{\Psi}(k,t)##?
Relevant Equations
##\tilde{\Psi}(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##

##U(t,t_{0})=e^{-\frac{i}{\hbar}\hat{H}t} = e^{-\frac{i}{\hbar}\frac{\hat{p^2}t}{2m}} ##
Since it asks for the time evolution of the wavefunction in the momentum space, I write : ##\tilde{\Psi}(k,t) = < p|U(t,t_{0})|\Psi> = < U^\dagger(t,t_{0})p|\Psi>##

Since ##U(t,t_{0})^\dagger = e^{\frac{i}{\hbar}\frac{\hat{p^2}t}{2m}}##, the above equation becomes
##\tilde{\Psi}(k,t) = e^{\frac{-i}{\hbar}\frac{p^2t}{2m}} < p|\Psi> = e^{\frac{-i}{\hbar}\frac{p^2t}{2m}} \frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##

Evaluate this with ##\Psi(x)=(\frac{\alpha}{\pi})^{\frac{1}{4}}e^{ik_{0}x-ax^{2}/2}##, I end up getting :
##\tilde{\Psi}(k,t) = \frac{1}{\sqrt{a}}(\frac{\alpha}{\pi})^{1/4}e^{-\frac{(k-k_{0})^2}{2a}}e^{\frac{-i}{\hbar}\frac{p^2t}{2m}}##

Since ##p=\hbar k##,
##\tilde{\Psi}(k,t) = \frac{1}{\sqrt{a}}(\frac{\alpha}{\pi})^{1/4}e^{-\frac{(k-k_{0})^2}{2a}}e^{\frac{-i}{\hbar}\frac{\hbar^2k^2t}{2m}}##

Is this the right way to solve this problem?
 
Last edited:
Physics news on Phys.org
Your work looks good to me except for some sign issues.
Foracle said:
Relevant Equations:: ##\tilde{\Psi}(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##
Check to see if the factor of ##e^{ikx}## in the integrand should actually be ##e^{-ikx}##. With ##e^{-ikx}##, then I think your result for ##\tilde{\Psi}(k, t)## is correct. But, if you use your way of writing ##\tilde{\Psi}(k)##, then I believe you would get a result for ##\tilde{\Psi}(k, t)## with a factor of ##\large e^{-\frac{(k+k_0)^2}{2a}}## instead of ##\large e^{-\frac{(k-k_0)^2}{2a}}##.

(But maybe I'm the one who's getting the signs wrong. :oldsmile:)
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top