Time evolution of a particle in momentum space

Click For Summary
The discussion focuses on the time evolution of a wavefunction in momentum space, specifically using the equation for the wavefunction transformation. The participant derives the expression for the wavefunction in momentum space, ultimately arriving at an equation that incorporates the exponential factors related to momentum and time. There is a debate about the correct sign in the integrand of the Fourier transform, which could affect the final result. Clarifications are made regarding the potential sign errors in the derived equations, particularly concerning the terms involving \(k\) and \(k_0\). The conversation emphasizes the importance of careful attention to signs in quantum mechanics calculations.
Foracle
Messages
29
Reaction score
8
Homework Statement
At time t=0, the wave function of a particle is
##\Psi(x,0)=(\frac{\alpha}{\pi})^{\frac{1}{4}}e^{ik_{0}x-ax^{2}/2}##
##\alpha## and ##k_{0}## are real constants

What is the wavefunction at time t in momentum space, ##\tilde{\Psi}(k,t)##?
Relevant Equations
##\tilde{\Psi}(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##

##U(t,t_{0})=e^{-\frac{i}{\hbar}\hat{H}t} = e^{-\frac{i}{\hbar}\frac{\hat{p^2}t}{2m}} ##
Since it asks for the time evolution of the wavefunction in the momentum space, I write : ##\tilde{\Psi}(k,t) = < p|U(t,t_{0})|\Psi> = < U^\dagger(t,t_{0})p|\Psi>##

Since ##U(t,t_{0})^\dagger = e^{\frac{i}{\hbar}\frac{\hat{p^2}t}{2m}}##, the above equation becomes
##\tilde{\Psi}(k,t) = e^{\frac{-i}{\hbar}\frac{p^2t}{2m}} < p|\Psi> = e^{\frac{-i}{\hbar}\frac{p^2t}{2m}} \frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##

Evaluate this with ##\Psi(x)=(\frac{\alpha}{\pi})^{\frac{1}{4}}e^{ik_{0}x-ax^{2}/2}##, I end up getting :
##\tilde{\Psi}(k,t) = \frac{1}{\sqrt{a}}(\frac{\alpha}{\pi})^{1/4}e^{-\frac{(k-k_{0})^2}{2a}}e^{\frac{-i}{\hbar}\frac{p^2t}{2m}}##

Since ##p=\hbar k##,
##\tilde{\Psi}(k,t) = \frac{1}{\sqrt{a}}(\frac{\alpha}{\pi})^{1/4}e^{-\frac{(k-k_{0})^2}{2a}}e^{\frac{-i}{\hbar}\frac{\hbar^2k^2t}{2m}}##

Is this the right way to solve this problem?
 
Last edited:
Physics news on Phys.org
Your work looks good to me except for some sign issues.
Foracle said:
Relevant Equations:: ##\tilde{\Psi}(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##
Check to see if the factor of ##e^{ikx}## in the integrand should actually be ##e^{-ikx}##. With ##e^{-ikx}##, then I think your result for ##\tilde{\Psi}(k, t)## is correct. But, if you use your way of writing ##\tilde{\Psi}(k)##, then I believe you would get a result for ##\tilde{\Psi}(k, t)## with a factor of ##\large e^{-\frac{(k+k_0)^2}{2a}}## instead of ##\large e^{-\frac{(k-k_0)^2}{2a}}##.

(But maybe I'm the one who's getting the signs wrong. :oldsmile:)
 
At first, I derived that: $$\nabla \frac 1{\mu}=-\frac 1{{\mu}^3}\left((1-\beta^2)+\frac{\dot{\vec\beta}\cdot\vec R}c\right)\vec R$$ (dot means differentiation with respect to ##t'##). I assume this result is true because it gives valid result for magnetic field. To find electric field one should also derive partial derivative of ##\vec A## with respect to ##t##. I've used chain rule, substituted ##\vec A## and used derivative of product formula. $$\frac {\partial \vec A}{\partial t}=\frac...