Time evolution of a particle in momentum space

Foracle
Messages
29
Reaction score
8
Homework Statement
At time t=0, the wave function of a particle is
##\Psi(x,0)=(\frac{\alpha}{\pi})^{\frac{1}{4}}e^{ik_{0}x-ax^{2}/2}##
##\alpha## and ##k_{0}## are real constants

What is the wavefunction at time t in momentum space, ##\tilde{\Psi}(k,t)##?
Relevant Equations
##\tilde{\Psi}(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##

##U(t,t_{0})=e^{-\frac{i}{\hbar}\hat{H}t} = e^{-\frac{i}{\hbar}\frac{\hat{p^2}t}{2m}} ##
Since it asks for the time evolution of the wavefunction in the momentum space, I write : ##\tilde{\Psi}(k,t) = < p|U(t,t_{0})|\Psi> = < U^\dagger(t,t_{0})p|\Psi>##

Since ##U(t,t_{0})^\dagger = e^{\frac{i}{\hbar}\frac{\hat{p^2}t}{2m}}##, the above equation becomes
##\tilde{\Psi}(k,t) = e^{\frac{-i}{\hbar}\frac{p^2t}{2m}} < p|\Psi> = e^{\frac{-i}{\hbar}\frac{p^2t}{2m}} \frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##

Evaluate this with ##\Psi(x)=(\frac{\alpha}{\pi})^{\frac{1}{4}}e^{ik_{0}x-ax^{2}/2}##, I end up getting :
##\tilde{\Psi}(k,t) = \frac{1}{\sqrt{a}}(\frac{\alpha}{\pi})^{1/4}e^{-\frac{(k-k_{0})^2}{2a}}e^{\frac{-i}{\hbar}\frac{p^2t}{2m}}##

Since ##p=\hbar k##,
##\tilde{\Psi}(k,t) = \frac{1}{\sqrt{a}}(\frac{\alpha}{\pi})^{1/4}e^{-\frac{(k-k_{0})^2}{2a}}e^{\frac{-i}{\hbar}\frac{\hbar^2k^2t}{2m}}##

Is this the right way to solve this problem?
 
Last edited:
Physics news on Phys.org
Your work looks good to me except for some sign issues.
Foracle said:
Relevant Equations:: ##\tilde{\Psi}(k)=\frac{1}{\sqrt{2\pi}}\int_{-\infty }^{\infty}dxe^{ikx}\Psi(x)##
Check to see if the factor of ##e^{ikx}## in the integrand should actually be ##e^{-ikx}##. With ##e^{-ikx}##, then I think your result for ##\tilde{\Psi}(k, t)## is correct. But, if you use your way of writing ##\tilde{\Psi}(k)##, then I believe you would get a result for ##\tilde{\Psi}(k, t)## with a factor of ##\large e^{-\frac{(k+k_0)^2}{2a}}## instead of ##\large e^{-\frac{(k-k_0)^2}{2a}}##.

(But maybe I'm the one who's getting the signs wrong. :oldsmile:)
 
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top