- #1

ShayanJ

Gold Member

- 2,788

- 586

## Main Question or Discussion Point

I'm reading this paper and have no problem with its calculations. But there is one little thing I'm not sure I understand. At some point, the author tries to find the amount of momentum carried across the spatial direction of the worldsheet in a time ## \Delta t ## by calculating the following integral:

## \Delta P_1=\int dt \sqrt{-g} P^r_{\ \ x^1} ##

where g is the induced metric on the worldsheet and r and t are the coordinates on the worldsheet which are also two of the background spacetime coordinates along with ## x^1 ##.

My problem is, I'm not sure I understand the reason for the presence of ## \sqrt{-g} ## in the integrand instead of integrating only ## P^r_{\ \ x^1} ##. Could anyone explain?

Thanks

## \Delta P_1=\int dt \sqrt{-g} P^r_{\ \ x^1} ##

where g is the induced metric on the worldsheet and r and t are the coordinates on the worldsheet which are also two of the background spacetime coordinates along with ## x^1 ##.

My problem is, I'm not sure I understand the reason for the presence of ## \sqrt{-g} ## in the integrand instead of integrating only ## P^r_{\ \ x^1} ##. Could anyone explain?

Thanks