Timelike and lightlike/null vectors

  • Thread starter Thread starter purakanui
  • Start date Start date
  • Tags Tags
    Vectors
purakanui
Messages
10
Reaction score
0
I have another problem that I am stuck on.

Show that a timelike vector cannot be orthogonal to a null vector.

Timelike:
X^{2} = g(sub a b)X^{a}X^{b} > 0

Null:
X^{2} = g(sub a b)X^{a}X^{b} = 0

In order for them to be orthogonal...

g(sub a b)X^{a}Y^{a} = 0

I know from the line element of Minkowski space-time you have

ds^{2} = dt^{2} - dx^{2} - dy^{2} - dz^{2}

I have played around with substituting the line element into the equation that specifies if it is orthogonal, but to no success. Any help would be great!

Sorry for the bad writting, I couldn't get latex to do subscripts, it only did them in superscripts...

Thanks,

Chris
 
Physics news on Phys.org
Here's a possible argument. Treat each 4 vector as e.g. (x0, r) where r is a 3 vector, x0 the timelike component. Let Y be a null vector, X be timelike vector. Then we have:

(1) Y0^2 - ry dot ry = 0, where dot is euclidean 3 dot product.

(2) X0 Y0 - rx dot ry = 0

(3) X0^2 - rx dot rx > 0

From which:

x0 > norm(rx) , 3 norm, euclidean, by (3)

Y0 = norm (ry) by (1)

X0 Y0 > norm(rx) norm(ry) >= rx dot ry

which contradicts (2).
 
thanks =)
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Back
Top