To find mean wedivide the sum of no.s with 'n'for variance why 'n-1'

dexterdev
Messages
194
Reaction score
1
Hi all,
For finding average we take the sum of sequence numbers and divide by the number of elements. Why for variance this changes to number of elements minus 1.

-Devanand T
 
Physics news on Phys.org
The definition of the formula for the "sample variance" varies from book to book. Many books prefer the formula that uses division by n-1 because this is also the formula for the "unbiased estimator" of the population variance. Do you know about the definition of an "unbiased" estimator? - or the definition of an "estimator" for that matter?
 
To add to what Stephen Tashi said, there are general formulas for an arbitrary number of degrees of freedom.

If you do enough statistics you'll see n-1, n-2, n-4 instead of n-1 and the reason is because you are estimating a quantity using p known parameters which is why you divide by n-p to get un-biased estimator.

You'll learn this when you look at degrees of freedom in depth.
 
Thank you guys , I will see what an estimator and degrees of freedom etc...No idea on these.
 
Let me try to show why n-1 is right in certain situations.
Suppose there is a total population N with unknown mean μ and variance σ2. From this, you draw a sample S = {xi} of size n. You can calculate the mean μS = Ʃxi/n and variance σ2S = Ʃ(xiS)2/n of the sample (just treated as a set of numbers).
Consider the function VS(y) = Ʃ(xi-y)2/n.
If somehow you knew the real value of μ you could write down an unbiased estimate for σ2 as VS(μ).
The mean of the sample, μS, is that number y which minimises VS(y). Since the true mean of the population is likely to be a little different, VS(μ) tends to be greater than VSS).
One way to think of this is that taking all the samples relative to μS removes one degree of freedom, leaving only n-1 degrees for how the samples are scattered around it.
Anyway, it's not hard to show that σ2S*n/(n-1) is the least biased estimator for σ2.
Sadly, the terminology is very misleading. "Sample variance" generally refers to the estimated variance of the population given the sample (i.e. the n-1 form), when it sounds like it should be the variance of the sample taken as an abstract set of numbers (the n form).
 
  • Like
Likes 1 person
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top