Is the Unit Interval [0,1] Open in Its Inherited Topology from the Real Line?

dapias09
Messages
28
Reaction score
0
Hi all,
I need help with something basic but I'm not sure how to handle it. The doubt is about how to consider the topology of the unit interval I=[0,1] inherited of the real line with its usual topology (intervals of the type (a,b)).

I think that is just to pay attention to the definition, I mean, the open subsets of 'I' would be the intersection of a usual open interval and 'I'. In this way, 'I' itself would be a open subset of the inherited topology, and all the sets of the form [0,x), (a,b) and (y,1] -with 0 < x,a,b,y <1 - would be open sets of the inherited topology.

Please, can anyone tell me if I'm right?
Thanks in advance.
 
Physics news on Phys.org
Sounds about right.

Note that some sets in the subspace are open sets even if they aren't open in the larger space.

For instance, [0, 1] is closed in R. But when we consider [0, 1] as a subspace, it's open (because the entire topological space is required to be open in any topology).

Similarly, [0, 1), which is neither open nor closed in R is open in [0, 1].
 
Thank you Tac-Tics
 
A sphere as topological manifold can be defined by gluing together the boundary of two disk. Basically one starts assigning each disk the subspace topology from ##\mathbb R^2## and then taking the quotient topology obtained by gluing their boundaries. Starting from the above definition of 2-sphere as topological manifold, shows that it is homeomorphic to the "embedded" sphere understood as subset of ##\mathbb R^3## in the subspace topology.
Back
Top