- #1

- 2

- 0

## Main Question or Discussion Point

Hello. I'm having a bit of a problem. I need to calculate a change in rotational velocity on a rigid object given a force (actually an impulse, but nevermind) acting on that object.

I can calculate the torque without problem, by doing the cross product of the force vector and the offset vector, the offset being the difference between the point on which the force is applied and the centre of mass for the object. Fine. But I need to translate that into rotational velocity, or rather change in rotational velocity.

The object has a known mass and the rotation must be calculated in global Euler angles (as in it doesn't matter how the object is rotated or what its current angular velocity is). How do I do this? I tried projecting the force vector onto the cross product between the offset vector and the torque, but that didn't work. I've been searching the 'net, but for some reason the answer to this question is pretty darn hard to find.

Thanks in advance for any help.

I can calculate the torque without problem, by doing the cross product of the force vector and the offset vector, the offset being the difference between the point on which the force is applied and the centre of mass for the object. Fine. But I need to translate that into rotational velocity, or rather change in rotational velocity.

The object has a known mass and the rotation must be calculated in global Euler angles (as in it doesn't matter how the object is rotated or what its current angular velocity is). How do I do this? I tried projecting the force vector onto the cross product between the offset vector and the torque, but that didn't work. I've been searching the 'net, but for some reason the answer to this question is pretty darn hard to find.

Thanks in advance for any help.