Total derivative involving rigid body motion of a surface

AI Thread Summary
The discussion centers on understanding the total derivative of a function involving rigid body motion, specifically how a surface normal and a direction vector transform under such motion. It highlights that the total derivative of the function f(x, t) should equal zero due to the invariance of the relationship between the surface normal and the direction vector during motion. However, a contradiction arises when calculating the total derivative, suggesting that the expression involving the partial derivative of the surface normal with respect to spatial coordinates must equal zero for arbitrary choices of motion parameters. This leads to confusion about the physical interpretation of the partial derivative of the surface normal with respect to time, as it may not be well-defined in certain contexts. The conversation ultimately seeks clarity on the correct application of derivatives in this rigid body context.
user11443
Messages
3
Reaction score
0
This stems from considering rigid body transformations, but is a general question about total derivatives. Something is probably missing in my understanding here. I had posted this to math.stackexchange, but did not receive any answers and someone suggested this forum might be more suitable.

A rigid body motion consisting of ##3 \times 3## rotation ##{\mathbf{R}}## and ##3 \times 1## translation ##{\mathbf{p}}## transforms a point ##{\mathbf{x}} \in {\mathbb{R}}^3## to ##{\mathbf{R}} {\mathbf{x}} + {\mathbf{p}}##. For a small motion, the displacement of a point ##{\mathbf{x}}## is ##\Delta {\mathbf{x}} = ({\mathbf{R}} {\mathbf{x}} + {\mathbf{p}}) - {\mathbf{x}}##, which is rewritten as ##\Delta {\mathbf{x}} = {\mathbf{w}} \times {\mathbf{x}} + {\mathbf{p}}##, where ##{\mathbf{w}}## is the angular velocity using ##{\mathbf{R}} \approx {\mathbf{I}} + [{\mathbf{w}}]_\times##, with ##[{\mathbf{w}}]_\times## the infinitesimal skew-symmetric matrix.

For a surface with unit surface normal ##{\mathbf{n}}##, suppose we have a unit direction vector ##{\mathbf{s}} \in {\mathbb{S}}^2## that depends only on time ##t## and is independent of ##{\mathbf{x}}##. Consider the function ##f({\mathbf{x}}, t) = {\mathbf{n}}({\mathbf{x}}, t)^\top {\mathbf{s}}(t)##. Suppose the same rigid body motion is applied to both the surface and the direction vector ##{\mathbf{s}}##, then it transforms the surface normal to ##{\mathbf{R}} {\mathbf{n}}## and ##{\mathbf{s}}## to ##{\mathbf{R}} {\mathbf{s}}##, so their changes are given by ##{\mathbf{w}} \times {\mathbf{n}}## and ##{\mathbf{w}} \times {\mathbf{s}}##, respectively. If a point ##{\mathbf{x}}_1## on the surface at time ##t_1## moves to ##{\mathbf{x}}_2## at time ##t_2##, we must have ##f({\mathbf{x}}_1, t_1) = f({\mathbf{x}}_2, t_2)##, since ##({\mathbf{R}} {\mathbf{n}})^\top {\mathbf{R}} {\mathbf{s}} = {\mathbf{n}}^\top {\mathbf{s}}##.

The above means the total derivative of ##f({\mathbf{x}}, t)## with respect to ##t## is ##0##. However,
\begin{align}
\frac{df}{dt} &= \frac{d}{dt} {\mathbf{n}}({\mathbf{x}}, t)^\top {\mathbf{s}}(t) = {\mathbf{s}}(t)^\top (\frac{\partial {\mathbf{n}}}{\partial {\mathbf{x}}} \frac{d{\mathbf{x}}}{dt} + \frac{\partial {\mathbf{n}}}{\partial t}) + {\mathbf{n}}({\mathbf{x}},t)^\top \frac{d{\mathbf{s}}}{dt} \\
&= {\mathbf{s}}(t)^\top \frac{\partial {\mathbf{n}}}{\partial {\mathbf{x}}} ({\mathbf{w}} \times {\mathbf{x}} + {\mathbf{p}}) + {\mathbf{s}}(t)^\top ({\mathbf{w}} \times {\mathbf{n}}) + {\mathbf{n}}({\mathbf{x}},t)^\top ({\mathbf{w}} \times {\mathbf{s}}) \\
&= {\mathbf{s}}(t)^\top \frac{\partial {\mathbf{n}}}{\partial {\mathbf{x}}} ({\mathbf{w}} \times {\mathbf{x}} + {\mathbf{p}}).
\end{align}
So, we have that ##{\mathbf{s}}(t)^\top \displaystyle\frac{\partial {\mathbf{n}}}{\partial {\mathbf{x}}} ({\mathbf{w}} \times {\mathbf{x}} + {\mathbf{p}})## must be ##0##, for any choice of ##{\mathbf{s}}##, ##{\mathbf{w}}## and ##{\mathbf{p}}##. Something seems to be wrong here, since ##\displaystyle\frac{\partial {\mathbf{n}}}{\partial {\mathbf{x}}}## is a property of the surface, independent of ##{\mathbf{s}}##, ##{\mathbf{w}}## and ##{\mathbf{p}}##. Can someone see what is incorrect in the above?
 
Physics news on Phys.org
It is the total derivative of ##\vec n## that is given by ##\vec w \times \vec n##, not the partial derivative wrt ##t##.
 
Thanks Orodruin. Is there a physical interpretation to the partial derivative of the surface normal with respect to time? Or in other words, it seems from applying the chain rule for ##\displaystyle\frac{d{\mathbf{n}}}{dt}## that
\begin{equation}
\frac{\partial {\mathbf{n}}}{\partial {\mathbf{x}}} \frac{d{\mathbf{x}}}{dt} + \frac{\partial {\mathbf{n}}}{\partial t} = {\mathbf{w}} \times {\mathbf{n}}.
\end{equation}
But I am having a hard time seeing how the two things above turn out to be equal.
 
The partial derivative of n wrt time is the change in the normal at a given point in space. Since the normal is defined only on a surface, this derivative may not even make sense (you could extend the definition of n to the full volume by considering normal unit vectors to a family of non-intersecting surfaces, such as the level surfaces of some function). When it does make sense, you will find that this changes depending on the surface as well as the rotation.
 
Thanks, Orodruin.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...

Similar threads

Back
Top