Total Momentum Operator for Klein Gordon Field

Click For Summary

Homework Help Overview

The discussion revolves around the total momentum operator for the Klein-Gordon field, specifically the expression for the momentum operator in terms of the energy-momentum tensor. Participants are examining the relationship between different forms of the tensor and the implications of the metric signature used in the context of quantum field theory.

Discussion Character

  • Conceptual clarification, Assumption checking, Mathematical reasoning

Approaches and Questions Raised

  • Participants explore the derivation of the momentum operator and question the sign differences in expressions from different texts. There is a focus on the implications of the metric signature on the definitions of derivatives and components of the momentum-energy tensor.

Discussion Status

Several participants have provided insights into the metric signature used in Peskin & Schroeder and its effects on the expressions for the momentum operator. There is ongoing clarification regarding the definitions and relationships between various components, with some participants confirming the correctness of expressions presented by others.

Contextual Notes

Participants are navigating through potential discrepancies in notation and definitions across different texts, particularly regarding the treatment of indices and the implications of the chosen metric signature. There is an acknowledgment of the need for careful attention to signs in mathematical expressions.

Samama Fahim
Messages
52
Reaction score
4
Homework Statement
Prove that $$P^i=\int d^3x T^{0i} = -\int d^3 \pi \partial_i \phi$$
Relevant Equations
$$T_{\nu}^{\mu}=\frac{\partial\mathcal{L}}{\partial(\partial_{\mu} \phi)}\partial_{\nu}\phi-\delta_{\nu}^{\mu}\mathcal{L}$$
As
$$\hat{P_i} = \int d^3x T^0_i,$$

and

$$T_i^0=\frac{\partial\mathcal{L}}{\partial(\partial_0 \phi)}\partial_i\phi-\delta_i^0\mathcal{L}=\frac{\partial\mathcal{L}}{\partial(\partial_0 \phi)}\partial_i\phi=\pi\partial_i\phi.$$

Therefore,

$$\hat{P_i} = \int d^3x \pi\partial_i\phi.$$

However, in Peskin & Schroeder it's given with a negative sign:

$$\hat{P^i} = -\int d^3x \pi\partial_i\phi.$$

How do I go from $$T^{0}_i$$ to $$T^{0i}$$?
 
Physics news on Phys.org
Does Peskin & Schroeder use a (+---) metric signature? In which case ##\partial^i \equiv - \partial_i## and\begin{align*}
P^i &= \int d^3 x T^{0i} = \int d^3 x \frac{\partial\mathcal{L}}{\partial(\partial_{0} \phi)}\partial^{i}\phi = \int d^3 x \pi \partial^i \phi = -\int d^3 x \pi \partial_i \phi
\end{align*}
 
  • Like
Likes   Reactions: vanhees71, Delta2 and Samama Fahim
ergospherical said:
Does Peskin & Schroeder use a (+---) metric signature? In which case ##\partial^i \equiv - \partial_i## and\begin{align*}
P^i &= \int d^3 x T^{0i} = \int d^3 x \frac{\partial\mathcal{L}}{\partial(\partial_{0} \phi)}\partial^{i}\phi = \int d^3 x \pi \partial^i \phi = -\int d^3 x \pi \partial_i \phi
\end{align*}
Yes they do use the signature (+---). Why would $$\partial^i$$ become $$-\partial_i$$ in that case?
 
Recall that with (+---) then ##\eta = \eta^{-1} = \mathrm{diag}(1,-1,-1,-1)## and\begin{align*}
v^0 = \eta^{0j} v_j = \eta^{00} v_0 = v_0
\end{align*}whilst, for any fixed ##i = 1,2,3##,\begin{align*}
v^i = \eta^{ij} v_j = \eta^{ii} v_i = -v_i
\end{align*}
 
  • Informative
Likes   Reactions: Samama Fahim
ergospherical said:
Does Peskin & Schroeder use a (+---) metric signature? In which case ##\partial^i \equiv - \partial_i## and\begin{align*}
P^i &= \int d^3 x T^{0i} = \int d^3 x \frac{\partial\mathcal{L}}{\partial(\partial_{0} \phi)}\partial^{i}\phi = \int d^3 x \pi \partial^i \phi = -\int d^3 x \pi \partial_i \phi
\end{align*}
Could you please confirm one more thing:

If

$$\phi = \int d^3k \frac{1}{(2 \pi)^3 \sqrt{2\omega_k}} \left(a(\vec{k})e^{-i(\omega_kx_o-\vec{k}\cdot \vec{x})}+a^{\dagger}(\vec{k})e^{i(\omega_kx_0-\vec{k}\cdot \vec{x})}\right).$$

then we should have

$$\partial_i\phi=\int d^3k \frac{1}{(2 \pi)^3 \sqrt{2\omega_k}} \left(a(\vec{k})(ik_i)e^{-i(\omega_kx_o-\vec{k}\cdot \vec{x})}+a^{\dagger}(\vec{k})(-ik_i)e^{i(\omega_kx_0-\vec{k}\cdot \vec{x})}\right).$$

Is that correct?
 
That looks fine to me.
 
  • Like
Likes   Reactions: Samama Fahim
ergospherical said:
That looks fine to me.
But Jakob Schwichtenberg in No-Nonsense Quantum Field Theory, p. 600 writes:

$$\partial_i\phi=\int d^3k \frac{1}{(2 \pi)^3 \sqrt{2\omega_k}} \left(a(\vec{k})(-ik_i)e^{-ikx}+a^{\dagger}(\vec{k})(ik_i)e^{ikx}\right).$$

Here $$kx \equiv k_{\mu}x^{\mu}$$
 
Apologies, Schwichtenberg's is correct (it's just due to the index placement on ##k##, which I'd overlooked). Remember that ##kx = k_{\mu} x^{\mu} = k_0 x^0 + k_i x^i = k^0 x^0 - k^i x^i##, so that ##\partial_i(kx) = k_i = - k^i##.
 
  • Informative
Likes   Reactions: Samama Fahim
ergospherical said:
Apologies, Schwichtenberg's is correct (it's just due to the index placement on ##k##, which I'd overlooked). Remember that ##kx = k_{\mu} x^{\mu} = k_0 x^0 + k_i x^i = k^0 x^0 - k^i x^i##, so that ##\partial_i(kx) = k_i = - k^i##.
Actually on p. 58, Schwichtenberg defines $$p_{\mu}p^{\mu}$$ to be $$p_0p_0-\vec{p} \cdot \vec{p}$$. And he also uses the metric signature $$(1,-1,-1,-1)$$ and not $$p_0p_0+\vec{p} \cdot \vec{p}$$
 
  • #10
That's correct, yes. By ##\mathbf{k} \cdot \mathbf{x}## one means ##k^i x^i##.
 
  • Like
Likes   Reactions: Samama Fahim
  • #11
ergospherical said:
That's correct, yes. By ##\mathbf{k} \cdot \mathbf{x}## one means ##k^i x^i##.
##\vec{k} \cdot \vec{x} = k_ix_i##, is that true also?
 
  • #12
Samama Fahim said:
##\vec{k} \cdot \vec{x} = k_ix_i##, is that true also?
It would be, yes, simply because ##k^i x^i = (-k_i)(-x_i) = k_i x_i##.
But be careful to note that the symbol ##\partial_i \equiv \partial / \partial x^i## refers to differentiation w.r.t. ##x^i##, not ##x_i##.

It all works out, but you have to be careful not to trip up on signs anywhere!
 
  • Like
  • Informative
Likes   Reactions: vanhees71 and Samama Fahim
  • #13
Thank you so much for all the responses.
 
  • #14
But on p. 311, Schwichtenberg writes $$kx \equiv k_0x_0-k_ix_i$$ and goes on to take the derivative $$\partial_0 e^{ik_0x_0} = ik_0 e^{ik_0x_0} $$
 
  • #15
It's still fine, because ##k_0 = k^0## and ##x_0 = x^0##. When using (+---), i.e. when ##\eta_{00} = 1##, you can raise/lower a ##0## index without having to change the sign.
 
  • Like
Likes   Reactions: Samama Fahim
  • #16
Four-divergence is

$$\partial_{\mu}K^{\mu}=\partial_0K^0+\partial_iK^i.$$

However, on p. 160 Schwichtenberg writes

$$0=\partial_{\mu}T^{\mu}_0$$
$$=\partial_0T^0_0-\partial_iT^i_0.$$

Why the minus sign? Here T denotes momentum-energy tensor.
 
  • #17
That does look like a blunder, though it doesn't change the argument much.\begin{align*}
\partial_{\mu} T^{\mu}_0 = \partial_0 T^0_0 + \partial_i T^i_0 &= 0 \\ \\

\implies \int_V d^3 x \partial_0 T^0_0 &= -\int_V d^3 x\partial_i T^i_0 \\

\implies \int_{V} d^3 x \partial_0 T^0_0 &= -\int_{\partial V} d^2 S_i T^i_0 = 0

\end{align*}so that ##\dfrac{d}{dx_0} \displaystyle{\int_{V} d^3 x T^0_0} = 0##.
 
  • Like
Likes   Reactions: Samama Fahim

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
7K
Replies
27
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
5K