Dr Edward said:
Thank you very much. That is indeed helpful.
Here is an excerpt from Sreenavisan
In all his brilliance he makes the integrating task like getting an ice cream.
I tried MathCad and the result was kilometres long.
My knowledge of maths is not that good to simplify.
I need an equation y=f(x) or y=f(t).
Hope you can help
Cheers
Edward
I kind of doubt that Sreenavisan has a nice simple formula in the form $y=f(x)$.
Instead I think he integrated and drew the graph with a numerical algorithm.
Note that the graph has 3 possible values for $y$ at $x=-0.1$.
That doesn't sound like a simple function of $x$ does it?
Anyway, if the hitch point travels along the x-axis, the known solution is (see
Tractrix on MathWorld)
$$x=L \arsech \frac y L -\sqrt{L^2-y^2}$$
Finding a rotated form of this is bound to be horrible.
Alternatively, we have the parametrized version:
$$\begin{cases}x(t)=L(t-\tanh t) \\ y(t)=L \sech t\end{cases}$$
We can rotate and shift this as desired.
Let me skip the steps for now and jump to the result:
$$\begin{cases}X(t)=x_{e,0} + \frac L{\sqrt{1+m^2}}({(t-\tanh t) - m \sech t})\\
Y(t)=y_{e,0} + \frac L{\sqrt{1+m^2}}({m(t-\tanh t) + \sech t})\end{cases}$$
In your case we have approximately $(x_{e,0},y_{e,0})=(6,6)$, $m=1$, and $L=10$.
If we fill that in, we get the
following graph from Wolfram|Alpha:
View attachment 8557
Looks the same as yours doesn't it?