1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Trajectory of a horizontally fired projectile

  1. Oct 3, 2012 #1
    1. The problem statement, all variables and given/known data
    For a lab that we did I need to draw the path of a horizontally fired projectile using a graph. When I look at the equation I derived it doesn't look like it will draw the path correctly.

    3. The attempt at a solution
    Δx = Vox*t
    T = Δx / Vox
    -h = Voy*t + .5*a*t2
    -h = Voy*(Δx / Vox) + .5*a* (Δx / Vox)2
    -h = 0 * (Δx / Vox) + .5*-g*(Δx2 / Vox2)
    -h = -g/2 * (Δx2 / Vox2)
    h = (g*Δx2)/ (2*Vox2)
    h = (g)/ (2*Vox2) * Δx2
    y = (g)/ (2*Vox2) * x2
    y = c*x2
    c = (g)/ (2*Vox2)

    h being the height the projectile was fired from above the ground. This looks almost right, but shouldn't I have a negative somewhere in my constant? The shape it should draw is the right half of an upside down parabola, should I not have used -h even though the projectile is moving under the starting point? Any help would be greatly appreciated, I'm a bit puzzled at this point.
     
  2. jcsd
  3. Oct 3, 2012 #2

    PhanthomJay

    User Avatar
    Science Advisor
    Homework Helper
    Gold Member

    The equation is y = y_o + V_oy(t) + 1/2at^2. Where y_o is the initial position of the projectile , h, at time t = 0 and position x = 0. You forgot the y_o term , and then you threw in an extra minus sign in front of the y. The portion on the right side of the equation determines the signage of y. y and h are not the same.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook