I Transfer rank2 tensor to a new basis

GGGGc
The trace of the sigma should be the same in both new and old basis. But I get a different one. Really appreciate for the help.
I’ll put the screen shot in the comment part
 
Physics news on Phys.org
IMG_9040.jpeg
 
I have no idea about your calculations since I haven't really learned the rules of manipulations of tensors. However, I am surprised that you don't get off-diagonal entries although the new basis looks as if there should be several of them.

I see that
$$
\sigma_{ij}=\underline{\hat{e}}^{(1)} \otimes \underline{\hat{e}}^{(1)}+\underline{\hat{e}}^{(2)}\otimes \underline{\hat{e}}^{(2)}+2\cdot\underline{\hat{e}}^{(3)}\otimes \underline{\hat{e}}^{(3)}
$$
Hence, I would write ##\underline{\hat{e}}^{(k)}=\alpha_k \underline{\hat{e}}'^{(1)}+\beta_k \underline{\hat{e}}'^{(2)}+\gamma_k \underline{\hat{e}}'^{(3)},## determine the ## \alpha_k\, , \,\beta_k\, , \,\gamma _k,## substitute all of them in the first equation and rearrange everything with the distributive law to obtain an equation
$$
\sigma'_{ij}=\sum_{p,q,r=1}^3 s_{pqr} \cdot \underline{\hat{e}}'^{(p)}\otimes \underline{\hat{e}}'^{(q)}\otimes \underline{\hat{e}}'^{(r)}
$$
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top