Hiche
- 82
- 0
We know that the \mathcal L\{f(t)\} = \int^{\infty}_0 e^{-st}f(t) dt.
Say we want to, for example, solve the following IVP: y'' + y = f(t) where f(t) = \begin{cases}<br /> 0 & 0 \leq t < \pi \\<br /> 1 & \pi \leq t < 2\pi\\<br /> 0 & 2\pi \leq t<br /> \end{cases}
and y(0) = 0 , y'(0) = 0
We apply Laplace on both side of the DE, and we get (s^2 + 1)Y(s) = \mathcal L\{f(t)\}. Using the cases above, do we divide the integral from 0 to \infty into three integrals?
I did that and \mathcal L\{f(t)\} = \int^{\pi}_0 e^{-st}(0) dt + \int^{2\pi}_{\pi} e^{-st}(1) dt + \int^{\infty}_{2\pi} e^{-st}(0) dt. The first and third integrals are zeros so we need to integrate the second one. We get -(1/s)[e^{-2\pi s} - e^{-\pi s}]. Right?
Back to the DE, Y(s) = -[e^{-2\pi s} - e^{-\pi s}] / s(s^2 + 1). How exactly do we find \mathcal L^{-1}\{Y(s)\}?
Say we want to, for example, solve the following IVP: y'' + y = f(t) where f(t) = \begin{cases}<br /> 0 & 0 \leq t < \pi \\<br /> 1 & \pi \leq t < 2\pi\\<br /> 0 & 2\pi \leq t<br /> \end{cases}
and y(0) = 0 , y'(0) = 0
We apply Laplace on both side of the DE, and we get (s^2 + 1)Y(s) = \mathcal L\{f(t)\}. Using the cases above, do we divide the integral from 0 to \infty into three integrals?
I did that and \mathcal L\{f(t)\} = \int^{\pi}_0 e^{-st}(0) dt + \int^{2\pi}_{\pi} e^{-st}(1) dt + \int^{\infty}_{2\pi} e^{-st}(0) dt. The first and third integrals are zeros so we need to integrate the second one. We get -(1/s)[e^{-2\pi s} - e^{-\pi s}]. Right?
Back to the DE, Y(s) = -[e^{-2\pi s} - e^{-\pi s}] / s(s^2 + 1). How exactly do we find \mathcal L^{-1}\{Y(s)\}?
Last edited: