auctor
- 8
- 0
What is the most straightforward way of transforming a BCS type state, \left| \Phi \right\rangle = \prod(u_k + v_k F^{\dagger}_{k} F^{\dagger}_{-k}) \left| vac \right\rangle, to real space?
Would it be valid to transform states of the form
F^{\dagger}_k F^{\dagger}_{-k} \longrightarrow a^{\dagger}_{n} a^{\dagger}_{m},~~~~F^{\dagger}_{k_1} F^{\dagger}_{-k_1} F^{\dagger}_{k_2} F^{\dagger}_{-k_2} \longrightarrow a^{\dagger}_{n} a^{\dagger}_{m} a^{\dagger}_{p} a^{\dagger}_{q}, ~~ etc.,
separately using multidimensional discrete FT? Is there an easier/more efficient way? Thanks for your help!
Would it be valid to transform states of the form
F^{\dagger}_k F^{\dagger}_{-k} \longrightarrow a^{\dagger}_{n} a^{\dagger}_{m},~~~~F^{\dagger}_{k_1} F^{\dagger}_{-k_1} F^{\dagger}_{k_2} F^{\dagger}_{-k_2} \longrightarrow a^{\dagger}_{n} a^{\dagger}_{m} a^{\dagger}_{p} a^{\dagger}_{q}, ~~ etc.,
separately using multidimensional discrete FT? Is there an easier/more efficient way? Thanks for your help!