MHB Transition Matrix: Polynomial to Coordinate Form

Kaspelek
Messages
26
Reaction score
0
Hi guys,

I'm having a little difficulty in converting a set of two bases into a transition matrix. My problem lies in the bases, because they are in polynomial form compared to your elementary coordinate form.

How would I go about finding the transitional matrix for this example...View attachment 824

Thanks in advance guys (Cool)
 

Attachments

  • question.PNG
    question.PNG
    14.4 KB · Views: 187
Physics news on Phys.org
We have $$-1+2x-2x^2=(-1)1+(2)x+(-2)x^2\\1-x+x^2=(1)1+(-1)x+(1)x^2\\2-x+2x^2=(2)1+(-1)x+(2)x^2$$ Transposing we get $$P_{\mathcal{S},\mathcal{B}}=\begin{bmatrix}{-1}&{\;\;1}&{\;\;2}\\{\;\;2}&{-1}&{\color{red}-1}\\{-2}&{\;\;1}&{\;\;2}\end{bmatrix}\;,\quad P_{\mathcal{B},\mathcal{S}}=\begin{bmatrix}{-1}&{\;\;1}&{\;\;2}\\{\;\;2}&{-1}&{\color{red}-1}\\{-2}&{\;\;1}&{\;\;2}\end{bmatrix}^{-1}=\ldots$$
 
Last edited:
Fernando Revilla said:
We have $$-1+2x-2x^2=(-1)1+(2)x+(-2)x^2\\1-x+x^2=(1)1+(-1)x+(1)x^2\\2-x+2x^2=(2)1+(-1)x+(2)x^2$$ Transposing we get $$P_{\mathcal{S},\mathcal{B}}=\begin{bmatrix}{-1}&{\;\;1}&{2}\\{\;\;2}&{-1}&{1}\\{-2}&{\;\;1}&{2}\end{bmatrix}\;,\quad P_{\mathcal{B},\mathcal{S}}=\begin{bmatrix}{-1}&{\;\;1}&{2}\\{\;\;2}&{-1}&{1}\\{-2}&{\;\;1}&{2}\end{bmatrix}^{-1}=\ldots$$
shouldn't the matrix be =\begin{bmatrix}{-1}&{\;\;1}&{2}\\{\;\;2}&{-1}&{-1}\\{-2}&{\;\;1}&{2}\end{bmatrix}
 
Kaspelek said:
shouldn't the matrix be =\begin{bmatrix}{-1}&{\;\;1}&{2}\\{\;\;2}&{-1}&{-1}\\{-2}&{\;\;1}&{2}\end{bmatrix}

Anyway, I've worked out the inverse matrix to be

|1 0 -1|
|2 -2 -3|
|0 1 1 |

I'm not sure about how to do parts b and c)

I'm thinking that perhaps for part b) you multiply with respect to that new basis?
 
Hi for b) I would try to write the polynomial in a vector of basis S. Once this is done, you could try multiplying it with one of the P matrix you have found (I'm try to find out with one!) altough you could also just play with it and find the new vector in basis B,

but doing so, you wouldn't learn much!

For c) The matrix given is in basis S how could you change it?! I leave this one to you, if you complete the b) you should be able to deal with this one :)
 
Kaspelek said:
shouldn't the matrix be =\begin{bmatrix}{-1}&{\;\;1}&{2}\\{\;\;2}&{-1}&{-1}\\{-2}&{\;\;1}&{2}\end{bmatrix}

Kaspelek said:
Anyway, I've worked out the inverse matrix to be

|1 0 -1|
|2 -2 -3|
|0 1 1 |

I'm not sure about how to do parts b and c)

I'm thinking that perhaps for part b) you multiply with respect to that new basis?

So to be sure, you were right about the typo in the matrix Fernando Revilla had. Having computed the inverse as necessary, your next step would be to say

$$[v]_\mathcal{S} = P_{\mathcal{S},\mathcal{B}} [v]_\mathcal{B}\\
= \begin{bmatrix}{1}&{\;\;0}&{-1}
\\{2}&{-2}&{-3}
\\{0}&{\;\;1}&{1}\end{bmatrix}\,
\begin{bmatrix}{2}
\\{3}
\\{1}\end{bmatrix}
$$

For c), the necessary computation is
$$[T]_{\mathcal{B}} =
P_{\mathcal{B},\mathcal{S}} \,
[T]_{\mathcal{S}} \,
P_{\mathcal{S},\mathcal{B}} $$
Each of which you have previously computed.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top